
Perl & LWP

By Sean M. Burke

 Foreword

 Preface

 Audience for This Book

 Structure of This Book

 Order of Chapters

 Important Standards Documents

 Conventions Used in This Book

 Comments & Questions

 Acknowledgments

 Chapter 1. Introduction to Web Automation

 Section 1.1. The Web as Data Source

 Section 1.2. History of LWP

 Section 1.3. Installing LWP

 Section 1.4. Words of Caution

 Section 1.5. LWP in Action

 Chapter 2. Web Basics

 Section 2.1. URLs

 Section 2.2. An HTTP Transaction

 Section 2.3. LWP::Simple

 Section 2.4. Fetching Documents Without LWP::Simple

 Section 2.5. Example: AltaVista

 Section 2.6. HTTP POST

 Section 2.7. Example: Babelfish

 Chapter 3. The LWP Class Model

 Section 3.1. The Basic Classes

 Section 3.2. Programming with LWP Classes

 Section 3.3. Inside the do_GET and do_POST Functions

 Section 3.4. User Agents

 Section 3.5. HTTP::Response Objects

 Section 3.6. LWP Classes: Behind the Scenes

 Chapter 4. URLs

 Section 4.1. Parsing URLs

 Section 4.2. Relative URLs

 Section 4.3. Converting Absolute URLs to Relative

 Section 4.4. Converting Relative URLs to Absolute

 Chapter 5. Forms

 Section 5.1. Elements of an HTML Form

 Section 5.2. LWP and GET Requests

 Section 5.3. Automating Form Analysis

 Section 5.4. Idiosyncrasies of HTML Forms

 Section 5.5. POST Example: License Plates

 Section 5.6. POST Example: ABEBooks.com

 Section 5.7. File Uploads

 Section 5.8. Limits on Forms

 Chapter 6. Simple HTML Processing with Regular Expressions

 Section 6.1. Automating Data Extraction

 Section 6.2. Regular Expression Techniques

 Section 6.3. Troubleshooting

 Section 6.4. When Regular Expressions Aren't Enough

 Section 6.5. Example: Extracting Linksfrom a Bookmark File

 Section 6.6. Example: Extracting Linksfrom Arbitrary HTML

 Section 6.7. Example: Extracting Temperatures from Weather Underground

 Chapter 7. HTML Processing with Tokens

 Section 7.1. HTML as Tokens

 Section 7.2. Basic HTML::TokeParser Use

 Section 7.3. Individual Tokens

 Section 7.4. Token Sequences

 Section 7.5. More HTML::TokeParser Methods

 Section 7.6. Using Extracted Text

 Chapter 8. Tokenizing Walkthrough

 Section 8.1. The Problem

 Section 8.2. Getting the Data

 Section 8.3. Inspecting the HTML

 Section 8.4. First Code

 Section 8.5. Narrowing In

 Section 8.6. Rewrite for Features

 Section 8.7. Alternatives

 Chapter 9. HTML Processing with Trees

 Section 9.1. Introduction to Trees

 Section 9.2. HTML::TreeBuilder

 Section 9.3. Processing

 Section 9.4. Example: BBC News

 Section 9.5. Example: Fresh Air

 Chapter 10. Modifying HTML with Trees

 Section 10.1. Changing Attributes

 Section 10.2. Deleting Images

 Section 10.3. Detaching and Reattaching

 Section 10.4. Attaching in Another Tree

 Section 10.5. Creating New Elements

 Chapter 11. Cookies, Authentication,and Advanced Requests

 Section 11.1. Cookies

 Section 11.2. Adding Extra Request Header Lines

 Section 11.3. Authentication

 Section 11.4. An HTTP Authentication Example:The Unicode Mailing Archive

 Chapter 12. Spiders

 Section 12.1. Types of Web-Querying Programs

 Section 12.2. A User Agent for Robots

 Section 12.3. Example: A Link-Checking Spider

 Section 12.4. Ideas for Further Expansion

 Appendix A. LWP Modules

 Appendix B. HTTP Status Codes

 Section B.1. 100s: Informational

 Section B.2. 200s: Successful

 Section B.3. 300s: Redirection

 Section B.4. 400s: Client Errors

 Section B.5. 500s: Server Errors

 Appendix C. Common MIME Types

 Appendix D. Language Tags

 Appendix E. Common Content Encodings

 Appendix F. ASCII Table

 Appendix G. User's View of Object-Oriented Modules

 Section G.1. A User's View of Object-Oriented Modules

 Section G.2. Modules and Their Functional Interfaces

 Section G.3. Modules with Object-Oriented Interfaces

 Section G.4. What Can You Do with Objects?

 Section G.5. What's in an Object?

 Section G.6. What Is an Object Value?

 Section G.7. So Why Do Some Modules Use Objects?

 Section G.8. The Gory Details

 Colophon

 Index

Foreword

I started playing around with the Web a long time ago—at least, it feels that way. The first versions of
Mosaic had just showed up, Gopher and Wais were still hot technology, and I discovered an HTTP
server program called Plexus. What was different was it was implemented in Perl. That made it easy
to extend. CGI was not invented yet, so all we had were servlets (although we didn't call them that
then). Over time, I moved from hacking on the server side to the client side but stayed with Perl as the
programming language of choice. As a result, I got involved in LWP, the Perl web client library.

A lot has happened to the web since then. These days there is almost no end to the information at our
fingertips: news, stock quotes, weather, government info, shopping, discussion groups, product info,
reviews, games, and other entertainment. And the good news is that LWP can help automate them all.

This book tells you how you can write your own useful web client applications with LWP and its
related HTML modules. Sean's done a great job of showing how this powerful library can be used to
make tools that automate various tasks on the Web. If you are like me, you probably have many
examples of web forms that you find yourself filling out over and over again. Why not write a simple
LWP-based tool that does it all for you? Or a tool that does research for you by collecting data from
many web pages without you having to spend a single mouse click? After reading this book, you
should be well prepared for tasks such as these.

This book's focus is to teach you how to write scripts against services that are set up to serve
traditional web browsers. This means services exposed through HTML. Even in a world where people
eventually have discovered that the Web can provide real program-to-program interfaces (the current
"web services" craze), it is likely that HTML scraping will continue to be a valuable way to extract
information from the Web. I strongly believe that Perl and LWP is one of the best tools to get that job
done. Reading Perl and LWP is a good way get you started.

It has been fun writing and maintaining the LWP codebase, and Sean's written a fine book about using
it. Enjoy!

—Gisle Aas

Primary author and maintainer of LWP

Preface

Perl soared to popularity as a language for creating and managing web content. Perl is equally adept at
consuming information on the Web. Most web sites are created for people, but quite often you want to
automate tasks that involve accessing a web site in a repetitive way. Such tasks could be as simple as
saying "here's a list of URLs; I want to be emailed if any of them stop working," or they could involve
more complex processing of any number of pages. This book is about using LWP (the Library for
World Wide Web in Perl) and Perl to fetch and process web pages.

For example, if you want to compare the prices of all O'Reilly books on Amazon.com and bn.com,
you could look at each page yourself and keep track of the prices. Or you could write an LWP
program to fetch the product pages, extract the prices, and generate a report. O'Reilly has a lot of
books in print, and after reading this one, you'll be able to write and run the program much more
quickly than you could visit every catalog page.

Consider also a situation in which a particular page has links to several dozen files (images, music,
and so on) that you want to download. You could download each individually, by monotonously
selecting each link in your browser and choosing Save as..., or you could dash off a short LWP
program that scans for URLs in that page and downloads each, unattended.

Besides extracting data from web pages, you can also automate submitting data through web forms.
Whether this is a matter of uploading 50 image files through your company's intranet interface, or
searching the local library's online card catalog every week for any new books with "Navajo" in the
title, it's worth the time and piece of mind to automate repetitive processes by writing LWP programs
to submit data into forms and scan the resulting data.

Audience for This Book

This book is aimed at someone who already knows Perl and HTML, but I don't assume you're an
expert at either. I give quick refreshers on some of the quirkier aspects of HTML (e.g., forms), but in
general, I assume you know what each of the HTML tags means. If you know basic regular
expressions and are familiar with references and maybe even objects, you have all the Perl skills you
need to use this book.

If you're new to Perl, consider reading Learning Perl (O'Reilly) and maybe also The Perl Cookbook
(O'Reilly). If your HTML is shaky, try the HTML Pocket Reference or HTML: The Definitive Guide
(O'Reilly). If you don't feel comfortable using objects in Perl, reading Appendix G in this book should
be enough to bring you up to speed.

Structure of This Book

The book is divided into 12 chapters and 7 appendixes, as follows:

Chapter 1 covers in general terms what LWP does, the alternatives to using LWP, and when you
shouldn't use LWP.

Chapter 2 explains how the Web works and some easy-to-use yet limited functions for accessing it.

Chapter 3 covers the more powerful interface to the Web.

Chapter 4 shows how to parse URLs with the URI class, and how to convert between relative and
absolute URLs.

Chapter 5 describes how to submit GET and POST forms.

Chapter 6 shows how to extract information from HTML using regular expressions.

Chapter 7 provides an alternative approach to extracting data from HTML using the
HTML::TokeParser module.

Chapter 8 is a case study of data extraction using tokens.

Chapter 9 shows how to extract data from HTML using the HTML::TreeBuilder module.

Chapter 10 covers the use of HTML::TreeBuilder to modify HTML files.

Chapter 11 deals with the tougher parts of requests.

Chapter 12 explores the technological issues involved in automating the download of more than one
page from a site.

Appendix A is a complete list of the LWP modules.

Appendix B is a list of HTTP codes, what they mean, and whether LWP considers them error or
success.

Appendix C contains the most common MIME types and what they mean.

Appendix D lists the most common language tags and their meanings (e.g., "zh-cn" means Mainland
Chinese, while "sv" is Swedish).

Appendix E is a list of the most common character encodings (character sets) and the tags that identify
them.

Appendix F is a table to help you make sense of the most common Unicode characters. It shows each
character, its numeric code (in decimal, octal, and hex), and any HTML escapes there may be for it.

Appendix G is an introduction to the use of Perl's object-oriented programming features.

Order of Chapters

The chapters in this book are arranged so that if you read them in order, you will face a minimum of
cases where I have to say "you won't understand this part of the code, because we won't cover that
topic until two chapters later." However, only some of what each chapter introduces is used in later
chapters. For example, Chapter 3 lists all sorts of LWP methods that you are likely to use eventually,
but the typical task will use only a few of those, and only a few will show up in later chapters. In cases
where you can't infer the meaning of a method from its name, you can always refer back to the earlier
chapters or use perldoc to see the applicable module's online reference documentation.

Important Standards Documents

The basic protocols and data formats of the Web are specified in a number of Internet RFCs. The most
important are:

RFC 2616: HTTP 1.1

ftp://ftp.isi.edu/in-notes/rfc2616.txt

RFC 2965: HTTP Cookies Specification

ftp://ftp.isi.edu/in-notes/rfc2965.txt

RFC 2617: HTTP Authentication: Basic and Digest Access Authentication

ftp://ftp.isi.edu/in-notes/rfc2617.txt

RFC 2396: Uniform Resource Identifiers: Generic Syntax

ftp://ftp.isi.edu/in-notes/rfc2396.txt

HTML 4.01 specification

http://www.w3.org/TR/html401/

HTML 4.01 Forms specification

http://www.w3.org/TR/html401/interact/forms/

Character sets

http://www.iana.org/assignments/character-sets

Country codes

http://www.isi.edu/in-notes/iana/assignments/country-codes

Unicode specifications

http://www.unicode.org

RFC 2279: Encoding Unicode as UTF-8

ftp://ftp.isi.edu/in-notes/rfc2279.txt

Request For Comments documents

http://www.rfc-editor.org

IANA protocol assignments

http://www.iana.org/numbers.htm

Chapter 1. Introduction to Web Automation

LWP (short for "Library for World Wide Web in Perl") is a set of Perl modules and object-oriented
classes for getting data from the Web and for extracting information from HTML. This chapter
provides essential background on the LWP suite. It describes the nature and history of LWP, which
platforms it runs on, and how to download and install it. This chapter ends with a quick walkthrough
of several LWP programs that illustrate common tasks, such as fetching web pages, extracting
information using regular expressions, and submitting forms.

1.1 The Web as Data Source

Most web sites are designed for people. User Interface gurus consult for large sums of money to build
HTML code that is easy to use and displays correctly on all browsers. User Experience gurus wag
their fingers and tell web designers to study their users, so they know the human foibles and desires of
the ape descendents who will be viewing the web site.

Fundamentally, though, a web site is home to data and services. A stockbroker has stock prices and
the value of your portfolio (data) and forms that let you buy and sell stock (services). Amazon has
book ISBNs, titles, authors, reviews, prices, and rankings (data) and forms that let you order those
books (services).

It's assumed that the data and services will be accessed by people viewing the rendered HTML. But
many a programmer has eyed those data sources and services on the Web and thought "I'd like to use
those in a program!" For example, they could page you when your portfolio falls past a certain point
or could calculate the "best" book on Perl based on the ratio of its price to its average reader review.

LWP lets you do this kind of web automation. With it, you can fetch web pages, submit forms,
authenticate, and extract information from HTML. Once you've used it to grab news headlines or
check links, you'll never view the Web in the same way again.

As with everything in Perl, there's more than one way to automate accessing the Web. In this book,
we'll show you everything from the basic way to access the Web (via the LWP::Simple module),
through forms, all the way to the gory details of cookies, authentication, and other types of complex
requests.

1.1.1 Screen Scraping

Once you've tackled the fundamentals of how to ask a web server for a particular page, you still have
to find the information you want, buried in the HTML response. Most often you won't need more than
regular expressions to achieve this. Chapter 6 describes the art of extracting information from HTML
using regular expressions, although you'll see the beginnings of it as early as Chapter 2, where we
query AltaVista for a word, and use a regexp to match the number in the response that says "We found
[number] results."

The more discerning LWP connoisseur, however, treats the HTML document as a stream of tokens
(Chapter 7, with an extended example in Chapter 8) or as a parse tree (Chapter 9). For example, you'll
use a token view and a tree view to consider such tasks as how to catch <img...> tags that are
missing some of their attributes, how to get the absolute URLs of all the headlines on the BBC News
main page, and how to extract content from one web page and insert it into a different template.

In the old days of 80x24 terminals, "screen scraping" referred to the art of programmatically extracting
information from the screens of interactive applications. That term has been carried over to mean the
act of automatically extracting data from the output of any system that was basically designed for
interactive use. That's the term used for getting data out of HTML that was meant to be looked at in a
browser, not necessarily extracted for your programs' use.

1.1.2 Brittleness

In some lucky cases, your LWP-related task consists of downloading a file without requiring your
program to parse it in any way. But most tasks involve having to extract a piece of data from some
part of the returned document, using the screen-scraping tactics as mentioned earlier. An unavoidable
problem is that the format of most web content can change at any time. For example in Chapter 8, I
discuss the task of extracting data from the program listings at the web site for the radio show Fresh
Air. The principle I demonstrate for that specific case is true for all extraction tasks: no pattern in the
data is permanent and so any data-parsing program will be "brittle."

For example, if you want to match text in section headings, you can write your program to depend on
them being inside <h2>...</h2> tags, but tomorrow the site's template could be redesigned, and
headings could then be in <h3 class='hdln'>...</h3> tags, at which point your program
won't see anything it considers a section heading. In practice, any given site's template won't change
on a daily basis (nor even yearly, for most sites), but as you read this book and see examples of data
extraction, bear in mind that each solution can't be the solution, but is just a solution, and a temporary
and brittle one at that.

As somewhat of a lesson in brittleness, in this book I show you data from various web sites
(Amazon.com, the BBC News web site, and many others) and show how to write programs to extract
data from them. However, that code is fragile. Some sites get redesigned only every few years;
Amazon.com seems to change something every few weeks. So while I've made every effort to provide
accurate code for the web sites as they exist at the time of this writing, I hope you will consider the
programs in this book valuable as learning tools even after the sites will have changed beyond
recognition.

1.1.3 Web Services

Programmers have begun to realize the great value in automating transactions over the Web. There is
now a booming industry in web services, which is the buzzword for data or services offered over the
Web. What differentiates web services from web sites is that web services don't emit HTML for the
ultimate reading pleasure of humans, they emit XML for programs.

This removes the need to scrape information out of HTML, neatly solving the problem of ever-
changing web sites made brittle by the fickle tastes of the web-browsing public. Some web services
standards (SOAP and XML-RPC) even make the remote web service appear to be a set of functions
you call from within your program—if you use a SOAP or XML-RPC toolkit, you don't even have to
parse XML!

However, there will always be information on the Web that isn't accessible as a web service. For that
information, screen scraping is the only choice.

1.2 History of LWP

The following history of LWP was written by Gisle Aas, one of the creators of LWP and its current
maintainer.

The libwww-perl project was started at the very first WWW conference held in Geneva in 1994. At
the conference, Martijn Koster met Roy Fielding who was presenting the work he had done on
MOMspider. MOMspider was a Perl program that traversed the Web looking for broken links and
built an index of the documents and links discovered. Martijn suggested turning the reusable
components of this program into a library. The result was the libwww-perl library for Perl 4 that Roy
maintained.

Later the same year, Larry Wall made the first "stable" release of Perl 5 available. It was obvious that
the module system and object-oriented features that the new version of Perl provided make Roy's
library even better. At one point, both Martijn and myself had made our own separate modifications of
libwww-perl. We joined forces, merged our designs, and made several alpha releases. Unfortunately,
Martijn ended up in disagreement with his employer about the intellectual property rights of work
done outside hours. To safeguard the code's continued availability to the Perl community, he asked me
to take over maintenance of it.

The LWP:: module namespace was introduced by Martijn in one of the early alpha releases. This
name choice was lively discussed on the libwww mailing list. It was soon pointed out that this name
could be confused with what certain implementations of threads called themselves, but no better name
alternatives emerged. In the last message on this matter, Martijn concluded, "OK, so we all agree
LWP stinks :-)." The name stuck and has established itself.

If you search for "LWP" on Google today, you have to go to 30th position before you find a link about
threads.

In May 1996, we made the first non-beta release of libwww-perl for Perl 5. It was called release 5.00
because it was for Perl 5. This made some room for Roy to maintain libwww-perl for Perl 4, called
libwww-perl-0.40. Martijn continued to contribute but was unfortunately "rolled over by the Java
train."

In 1997-98, I tried to redesign LWP around the concept of an event loop under the name LWPng. This
allowed many nice things: multiple requests could be handled in parallel and on the same connection,
requests could be pipelined to improve round-trip time, and HTTP/1.1 was actually supported. But the
tuits to finish it up never came, so this branch must by now be regarded as dead. I still hope some
brave soul shows up and decides to bring it back to life.

1998 was also the year that the HTML:: modules were unbundled from the core LWP distribution and
the year after Sean M. Burke showed up and took over maintenance of the HTML-Tree distribution,
actually making it handle all the real-world HTML that you will find. I had kind of given up on
dealing with all the strange HTML that the web ecology had let develop. Sean had enough dedication
to make sense of it.

Today LWP is in strict maintenance mode with a much slower release cycle. The code base seems to
be quite solid and capable of doing what most people expect it to.

1.3 Installing LWP

LWP and the associated modules are available in various distributions free from the Comprehensive
Perl Archive Network (CPAN). The main distributions are listed at the start of Appendix A, although
the details of which modules are in which distributions change occasionally.

If you're using ActivePerl for Windows or MacPerl for Mac OS 9, you already have LWP. If you're on
Unix and you don't already have LWP installed, you'll need to install it from CPAN using instructions
given in the next section.

To test whether you already have LWP installed:

% perl -MLWP -le "print(LWP->VERSION)"

(The second character in -le is a lowercase L, not a digit one.)

If you see:

Can't locate LWP in @INC (@INC contains: ...lots of paths...).
BEGIN failed--compilation aborted.

or if you see a version number lower than 5.64, you need to install LWP on your system.

There are two ways to install modules: using the CPAN shell or the old-fashioned manual way.

1.3.1 Installing LWP from the CPAN Shell

The CPAN shell is a command-line environment for automatically downloading, building, and
installing modules from CPAN.

1.3.1.1 Configuring

If you have never used the CPAN shell, you will need to configure it before you can use it. It will
prompt you for some information before building its configuration file.

Invoke the CPAN shell by entering the following command at a system shell prompt:

% perl -MCPAN -eshell

If you've never run it before, you'll see this:

We have to reconfigure CPAN.pm due to following uninitialized
parameters:

followed by a number of questions. For each question, the default answer is typically fine, but you
may answer otherwise if you know that the default setting is wrong or not optimal. Once you've
answered all the questions, a configuration file is created and you can start working with the CPAN
shell.

1.3.1.2 Obtaining help

If you need help at any time, you can read the CPAN shell's manual page by typing perldoc CPAN
or by starting up the CPAN shell (with perl -MCPAN -eshell at a system shell prompt) and
entering h at the cpan> prompt:

cpan> h

Display Information
 command argument description
 a,b,d,m WORD or /REGEXP/ about authors, bundles,
distributions, modules
 i WORD or /REGEXP/ about anything of above
 r NONE reinstall recommendations
 ls AUTHOR about files in the author's
directory

Download, Test, Make, Install...
 get download
 make make (implies get)
 test MODULES, make test (implies make)
 install DISTS, BUNDLES make install (implies test)
 clean make clean
 look open subshell in these dists'
directories
 readme display these dists' README files

Other
 h,? display this menu ! perl-code eval a
perl command
 o conf [opt] set and query options q quit the
cpan shell
 reload cpan load CPAN.pm again reload index load
newer indices
 autobundle Snapshot force cmd
unconditionally do cmd

1.3.1.3 Installing LWP

All you have to do is enter:

cpan> install Bundle::LWP

The CPAN shell will show messages explaining what it's up to. You may need to answer questions to
configure the various modules (e.g., libnet asks for mail hosts and so on for testing purposes).

After much activity, you should then have a fresh copy of LWP on your system, with far less work
than installing it manually one distribution at a time. At the time of this writing, install
Bundle::LWP installs not just the libwww-perl distribution, but also URI and HTML-Parser. It
does not install the HTML-Tree distribution that we'll use in Chapter 9 and Chapter 10. To do that,
enter:

cpan> install HTML::Tree

These commands do not install the HTML-Format distribution, which was also once part of the LWP
distribution. I do not discuss HTML-Format in this book, but if you want to install it so that you have
a complete LWP installation, enter this command:

cpan> install HTML::Format

Remember, LWP may be just about the most popular distribution in CPAN, but that's not all there is!
Look around the web-related parts of CPAN (I prefer the interface at http://search.cpan.org, but you
can also try http://kobesearch.cpan.org) as there are dozens of modules, from WWW::Automate to
SOAP::Lite, that can simplify your web-related tasks.

1.3.2 Installing LWP Manually

The normal Perl module installation procedure is summed up in the document perlmodinstall. You can
read this by running perldoc perlmodinstall at a shell prompt or online at
http://theoryx5.uwinnipeg.ca/CPAN/perl/pod/perlmodinstall.html.

CPAN is a network of a large collection of Perl software and documentation. See the CPAN FAQ at
http://www.cpan.org/misc/cpan-faq.html for more information about CPAN and modules.

1.3.2.1 Download distributions

First, download the module distributions. LWP requires several other modules to operate successfully.
You'll need to install the distributions given in Table 1-1, in the order in which they are listed.

Table 1-1. Modules used in this book
Distribution CPAN directory

MIME-Base64 authors/id/G/GA/GAAS

libnet authors/id/G/GB/GBAAR

HTML-Tagset authors/id/S/SBURKE

HTML-Parser authors/id/G/GA/GAAS

URI authors/id/G/GA/GAAS/URI

Compress-Zlib authors/id/P/PM/PMQS/Compress-Zlib

Digest-MD5 authors/id/G/GA/GAAS/Digest-MD5

libwww-perl authors/id/G/GA/GAAS/libwww-perl

HTML-Tree authors/id/S/SB/SBURKE/HTML-Tree

Fetch these modules from one of the FTP or web sites that form CPAN, listed at
http://www.cpan.org/SITES.html and http://mirror.cpan.org. Sometimes CPAN has several versions of
a module in the authors directory. Be sure to check the version number and get the latest.

For example to install MIME-Base64, you might first fetch
http://www.cpan.org/authors/id/G/GA/GAAS/ to see which versions are there, then fetch
http://www.cpan.org/authors/id/G/GA/GAAS/MIME-Base64-2.12.tar.gz and install that.

1.3.2.2 Unpack and configure

The distributions are gzipped tar archives of source code. Extracting a distribution creates a directory,
and in that directory is a Makefile.PL Perl program that builds a Makefile for you.

% tar xzf MIME-Base64-2.12.tar.gz
% cd MIME-Base64-2.12
% perl Makefile.PL
Checking if your kit is complete...
Looks good
Writing Makefile for MIME::Base64

1.3.2.3 Make, test, and install

Compile the code with the make command:

% make
cp Base64.pm blib/lib/MIME/Base64.pm
cp QuotedPrint.pm blib/lib/MIME/QuotedPrint.pm
/usr/bin/perl -I/opt/perl5/5.6.1/i386-freebsd -
I/opt/perl5/5.6.1
/opt/perl5/5.6.1/ExtUtils/xsubpp -typemap
/opt/perl5/5.6.1/ExtUtils/typemap Base64.xs > Base64.xsc && mv
 Base64.xsc Base64.c
cc -c -fno-strict-aliasing -I/usr/local/include -O -
DVERSION=\"2.12\"
 -DXS_VERSION=\"2.12\" -DPIC -fpic -I/opt/perl5/5.6.1/i386-
freebsd/CORE
Base64.c
Running Mkbootstrap for MIME::Base64 ()
chmod 644 Base64.bs
rm -f blib/arch/auto/MIME/Base64/Base64.so
LD_RUN_PATH="" cc -o blib/arch/auto/MIME/Base64/Base64.so -
shared
 -L/opt Base64.o
chmod 755 blib/arch/auto/MIME/Base64/Base64.so
cp Base64.bs blib/arch/auto/MIME/Base64/Base64.bs
chmod 644 blib/arch/auto/MIME/Base64/Base64.bs
Manifying blib/man3/MIME::Base64.3
Manifying blib/man3/MIME::QuotedPrint.3

Then make sure everything works on your system with make test:

% make test
PERL_DL_NONLAZY=1 /usr/bin/perl -Iblib/arch -Iblib/lib
-I/opt/perl5/5.6.1/i386-freebsd -I/opt/perl5/5.6.1 -e 'use
Test::Harness
 qw(&runtests $verbose); $verbose=0; runtests @ARGV;' t/*.t
t/base64..........ok
t/quoted-print....ok
t/unicode.........skipped test on this platform

All tests successful, 1 test skipped.
Files=3, Tests=306, 1 wallclock secs (0.52 cusr + 0.06 csys
= 0.58 CPU)

If it passes the tests, install it with make install (as the superuser):

make install
Installing /opt/perl5/site_perl/5.6.1/i386-
freebsd/auto/MIME/Base64/Base64.so
Installing /opt/perl5/site_perl/5.6.1/i386-
freebsd/auto/MIME/Base64/Base64.bs
Files found in blib/arch: installing files in blib/lib into
architecture
 dependent library tree
Installing /opt/perl5/site_perl/5.6.1/i386-
freebsd/MIME/Base64.pm
Installing /opt/perl5/site_perl/5.6.1/i386-
freebsd/MIME/QuotedPrint.pm
Installing /usr/local/man/man3/MIME::Base64.3
Installing /usr/local/man/man3/MIME::QuotedPrint.3
Writing /opt/perl5/site_perl/5.6.1/i386-
freebsd/auto/MIME/Base64/.packlist
Appending installation info to /opt/perl5/5.6.1/i386-
freebsd/perllocal.pod

1.4 Words of Caution

In theory, the underlying mechanisms of the Web make no difference between a browser getting data
and displaying it to you, and your LWP-based program getting data and doing something else with it.
However, in practice, almost all the data on the Web was put there with the assumption (sometimes
implicit, sometimes explicit) that it would be looked at directly in a browser. When you write an LWP
program that downloads that data, you are working against that assumption. The trick is to do this in
as considerate a way as possible.

1.4.1 Network and Server Load

When you access a web server, you are using scarce resources. You are using your bandwidth and the
web server's bandwidth. Moreover, processing your request places a load on the remote server,
particularly if the page you're requesting has to be dynamically generated, and especially if that
dynamic generation involves database access. If you're writing a program that requests several pages
from a given server but you don't need the pages immediately, you should write delays into your
program (such as sleep 60; to sleep for one minute), so that the load that you're placing on the
network and on the web server is spread unobtrusively over a longer period of time.

If possible, you might even want to consider having your program run in the middle of the night
(modulo the relevant time zones), when network usage is low and the web server is not likely to be
busy handling a lot of requests. Do this only if you know there is no risk of your program behaving
unpredictably. In Chapter 12, we discuss programs with definite risk of that happening; do not let such

programs run unattended until you have added appropriate safeguards and carefully checked that they
behave as you expect them to.

1.4.2 Copyright

While the complexities of national and international copyright law can't be covered in a page or two
(or even a library or two), the short story is that just because you can get some data off the Web
doesn't mean you can do whatever you want with it. The things you do with data on the Web form a
continuum, as far as their relation to copyright law. At the one end is direct use, where you sit at your
browser, downloading and reading pages as the site owners clearly intended. At the other end is illegal
use, where you run a program that hammers a remote server as it copies and saves copyrighted data
that was not meant for free public consumption, then saves it all to your public web server, which you
then encourage people to visit so that you can make money off of the ad banners you've put there.
Between these extremes, there are many gray areas involving considerations of "fair use," a tricky
concept. The safest guide in trying to stay on the right side of copyright law is to ask, by using the data
this way, could I possibly be depriving the original web site of some money that it would/could
otherwise get?

For example, suppose that you set up a program that copies data every hour from the Yahoo! Weather
site, for the 50 most populous towns in your state. You then copy the data directly to your public web
site and encourage everyone to visit it. Even though "no one owns the weather," even if any particular
bit of weather data is in the public domain (which it may be, depending on its source), Yahoo!
Weather put time and effort into making a collection of that data, presented in a certain way. And as
such, the collection of data is copyrighted.

Moreover, by posting the data publicly, you are almost definitely taking viewers away from Yahoo!
Weather, which means less ad revenue for them. Even if Yahoo! Weather didn't have any ads and so
wasn't obviously making any money off of viewers, your having the data online elsewhere means that
if Yahoo! Weather wanted to start having ads tomorrow, they'd be unable to make as much money at
it, because there would be people in the habit of looking at your web site's weather data instead of at
theirs.

1.4.3 Acceptable Use

Besides the protection provided by copyright law, many web sites have "terms of use" or "acceptable
use" policies, where the web site owners basically say "as a user, you may do this and this, but not that
or that, and if you don't abide by these terms, then we don't want you using this web site." For
example, a search engine's terms of use might stipulate that you should not make "automated queries"
to their system, nor should you show the search data on another site.

Before you start pulling data off of a web site, you should put good effort into looking around for its
terms of service document, and take the time to read it and reasonably interpret what it says. When in
doubt, ask the web site's administrators whether what you have in mind would bother them.

1.5 LWP in Action

Enough of why you should be careful when you automate the Web. Let's look at the types of things
you'll be learning in this book. Chapter 2 introduces web automation and LWP, presenting
straightforward functions to let you fetch web pages. Example 1-1 shows how to fetch the O'Reilly
home page and count the number of times Perl is mentioned.

Example 1-1. Count "Perl" in the O'Reilly catalog

#!/usr/bin/perl -w
use strict;
use LWP::Simple;

my $catalog = get("http://www.oreilly.com/catalog");
my $count = 0;
$count++ while $catalog =~ m{Perl}gi;
print "$count\n";

The LWP::Simple module's get() function returns the document at a given URL or undef if an
error occurred. A regular expression match in a loop counts the number of occurrences.

1.5.1 The Object-Oriented Interface

Chapter 3 goes beyond LWP::Simple to show larger LWP's powerful object-oriented interface. Most
useful of all the features it covers are how to set headers in requests and check the headers of
responses. Example 1-2 prints the identifying string that every server returns.

Example 1-2. Identify a server

#!/usr/bin/perl -w
use strict;
use LWP;

my $browser = LWP::UserAgent->new();
my $response = $browser->get("http://www.oreilly.com/");
print $response->header("Server"), "\n";

The two variables, $browser and $response, are references to objects. LWP::UserAgent
object $browser makes requests of a server and creates HTTP::Response objects such as
$response to represent the server's reply. In Example 1-2, we call the header() method on
the response to check one of the HTTP header values.

1.5.2 Forms

Chapter 5 shows how to analyze and submit forms with LWP, including both GET and POST
submissions. Example 1-3 makes queries of the California license plate database to see whether a
personalized plate is available.

Example 1-3. Query California license plate database

#!/usr/bin/perl -w
pl8.pl - query California license plate database

use strict;
use LWP::UserAgent;
my $plate = $ARGV[0] || die "Plate to search for?\n";

$plate = uc $plate;
$plate =~ tr/O/0/; # we use zero for letter-oh
die "$plate is invalid.\n"
 unless $plate =~ m/^[A-Z0-9]{2,7}$/
 and $plate !~ m/^\d+$/; # no all-digit plates

my $browser = LWP::UserAgent->new;
my $response = $browser->post(
 'http://plates.ca.gov/search/search.php3',
 [
 'plate' => $plate,
 'search' => 'Check Plate Availability'
],
);
die "Error: ", $response->status_line
 unless $response->is_success;

if($response->content =~ m/is unavailable/) {
 print "$plate is already taken.\n";
} elsif($response->content =~ m/and available/) {
 print "$plate is AVAILABLE!\n";
} else {
 print "$plate... Can't make sense of response?!\n";
}
exit;

Here's how you might use it:

% pl8.pl knee
KNEE is already taken.
% pl8.pl ankle
ANKLE is AVAILABLE!

We use the post() method on an LWP::UserAgent object to POST form parameters to a page.

1.5.3 Parsing HTML

The regular expression techniques in Examples Example 1-1 and Example 1-3 are discussed in detail
in Chapter 6. Chapter 7 shows a different approach, where the HTML::TokeParser module turns a
string of HTML into a stream of chunks ("start-tag," "text," "close-tag," and so on). Chapter 8 is a
detailed step-by-step walkthrough showing how to solve a problem using HTML::TokeParser.
Example 1-4 uses HTML::TokeParser to extract the src parts of all img tags in the O'Reilly home
page.

Example 1-4. Extract image locations

#!/usr/bin/perl -w

use strict;

use LWP::Simple;
use HTML::TokeParser;

my $html = get("http://www.oreilly.com/");
my $stream = HTML::TokeParser->new(\$html);
my %image = ();

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'S' && $token->[1] eq 'img') {
 # store src value in %image
 $image{ $token->[2]{'src'} }++;
 }
}

foreach my $pic (sort keys %image) {
 print "$pic\n";
}

The get_token() method on our HTML::TokeParser object returns an array reference,
representing a token. If the first array element is S, it's a token representing the start of a tag. The
second array element is the type of tag, and the third array element is a hash mapping attribute to
value. The %image hash holds the images we find.

Chapter 9 and Chapter 10 show how to use tree data structures to represent HTML. The
HTML::TreeBuilder module constructs such trees and provides operations for searching and
manipulating them. Example 1-5 extracts image locations using a tree.

Example 1-5. Extracting image locations with a tree

#!/usr/bin/perl -w

use strict;
use LWP::Simple;
use HTML::TreeBuilder;

my $html = get("http://www.oreilly.com/");
my $root = HTML::TreeBuilder->new_from_content($html);
my %images;
foreach my $node ($root->find_by_tag_name('img')) {
 $images{ $node->attr('src') }++;
}

foreach my $pic (sort keys %images) {
 print "$pic\n";
}

We create a new tree from the HTML in the O'Reilly home page. The tree has methods to help us
search, such as find_by_tag_name(), which returns a list of nodes corresponding to those
tags. We use that to find the img tags, then use the attr() method to get their src attributes.

1.5.4 Authentication

Chapter 11 talks about advanced request features such as cookies (used to identify a user between web
page accesses) and authentication. Example 1-6 shows how easy it is to request a protected page with
LWP.

Example 1-6. Authenticating

#!/usr/bin/perl -w

use strict;
use LWP;

my $browser = LWP::UserAgent->new();
$browser->credentials("www.example.com:80", "music", "fred" =>
"l33t1");
my $response = $browser->get("http://www.example.com/mp3s");
...

The credentials() method on an LWP::UserAgent adds the authentication information (the
host, realm, and username/password pair are the parameters). The realm identifies which username
and password are expected if there are multiple protected areas on a single host. When we request a
document using that LWP::UserAgent object, the authentication information is used if necessary.

Chapter 2. Web Basics

Three things made the Web possible: HTML for encoding documents, HTTP for transferring them,
and URLs for identifying them. To fetch and extract information from web pages, you must know all
three—you construct a URL for the page you wish to fetch, make an HTTP request for it and decode
the HTTP response, then parse the HTML to extract information. This chapter covers the construction
of URLs and the concepts behind HTTP. HTML parsing is tricky and gets its own chapters later, as
does the module that lets you manipulate URLs.

You'll also learn how to automate the most basic web tasks with the LWP::Simple module. As its
name suggests, this module has a very simple interface. You'll learn the limitations of that interface
and see how to use other LWP modules to fetch web pages without the limitations of LWP::Simple.

2.1 URLs

A Uniform Resource Locator (URL) is the address of something on the Web. For example:

http://www.oreilly.com/news/bikeweek_day1.html

URLs have a structure, given in RFC 2396. That RFC runs to 40 pages, largely because of the wide
variety of things for which you can construct URLs. Because we are interested only in HTTP and FTP
URLs, the components of a URL, with the delimiters that separate them, are:

scheme://username@server:port/path?query

In the case of our example URL, the scheme is http, the server is www.oreilly.com, and the path is
/news/bikeweek_day1.html.

This is an FTP URL:

ftp://ftp.is.co.za/rfc/rfc1808.txt

The scheme is ftp, the host is ftp.is.co.za, and the path is /rfc/rfc1808.txt. The scheme and the
hostname are not case sensitive, but the rest is. That is, ftp://ftp.is.co.za/rfc/rfc1808.txt and
fTp://ftp.Is.cO.ZA/rfc/rfc1808.txt are the same, but ftp://ftp.is.co.za/rfc/rfc1808.txt and
ftp://ftp.is.co.za/rfc/RFC1808.txt are not, unless that server happens to forgive case differences in
requests.

We're ignoring the URLs that don't designate things that a web client can retrieve. For example,
telnet://melvyl.ucop.edu/ designates a host with which you can start a Telnet session, and
mailto:mojo@jojo.int designates an email address to which you can send.

The only characters allowed in the path portions of a URL are the US-ASCII characters A through Z,
a through z, and 0-9 (but excluding extended ASCII characters such as ü and Unicode characters such
as or), and these permitted punctuation characters:

- _ . ! ~ * ' ,
: @ & + $ () /

For a query component, the same rule holds, except that the only punctuation characters allowed are
these:

- _ . ! ~ * ' ()

Any other characters must be URL encoded, i.e., expressed as a percent sign followed by the two
hexadecimal digits for that character. So if you wanted to use a space in a URL, it would have to be
expressed as %20, because space is character 32 in ASCII, and the number 32 expressed in
hexadecimal is 20.

Incidentally, sometimes you might also see some of these characters in a URL:

{ } | \ ^ [] `

But the document that defines URLs, RFC 2396, refers to the use of these as unreliable and "unwise."
When in doubt, encode it!

The query portion of a URL assigns values to parameters:

name=Hiram%20Veeblefeetzer+age=35+country=Madagascar

There are three parameters in that query string: name, with the value "Hiram
Veeblefeetzer" (the space has been encoded); age, with the value 35; and country, with the
value "Madagascar".

The URI::Escape module provides the uri_escape() function to help you build URLs:

use URI::Escape;
encoded_string = uri_escape(raw_string);

For example, to build the name, age, and country query string:

$n = uri_escape("Hiram Veeblefeetzer");
$a = uri_escape(35);
$c = uri_escape("Madagascar");
$query = "name=$n+age=$a+country=$c";
print $query;
name=Hiram%20Veeblefeetzer+age=35+country=Madagascar

2.2 An HTTP Transaction

The Hypertext Transfer Protocol (HTTP) is used to fetch most documents on the Web. It is formally
specified in RFC 2616, but this section explains everything you need to know to use LWP.

HTTP is a server/client protocol: the server has the file, and the client wants it. In regular web surfing,
the client is a web browser such as Mozilla or Internet Explorer. The URL for a document identifies
the server, which the browser contacts and requests the document from. The server returns either in
error ("file not found") or success (in which case the document is attached).

Example 2-1 contains a sample request from a client.

Example 2-1. An HTTP request

GET /daily/2001/01/05/1.html HTTP/1.1
Host: www.suck.com
User-Agent: Super Duper Browser 14.6
blank line

A successful response is given in Example 2-2.

Example 2-2. A successful HTTP response

HTTP/1.1 200 OK
Content-type: text/html
Content-length: 24204
blank line
and then 24,204 bytes of HTML code

A response indicating failure is given in Example 2-3.

Example 2-3. An unsuccessful HTTP response

HTTP/1.1 404 Not Found
Content-type: text/html
Content-length: 135

<html><head><title>Not Found</title></head><body>
Sorry, the object you requested was not found.
</body><html>
and then the server closes the connection

2.2.1 Request

An HTTP request has three parts: the request line, the headers, and the body of the request (normally
used to pass form parameters).

The request line says what the client wants to do (the method), what it wants to do it to (the path), and
what protocol it's speaking. Although the HTTP standard defines several methods, the most common
are GET and POST. The path is part of the URL being requested (in Example 2-1 the path is
/daily/2001/01/05/1.html). The protocol version is generally HTTP/1.1.

Each header line consists of a key and a value (for example, User-Agent:
SuperDuperBrowser/14.6). In versions of HTTP previous to 1.1, header lines were optional.
In HTTP 1.1, the Host: header must be present, to name the server to which the browser is talking.
This is the "server" part of the URL being requested (e.g., www.suck.com). The headers are terminated
with a blank line, which must be present regardless of whether there are any headers.

The optional message body can contain arbitrary data. If a body is sent, the request's Content-
Type and Content-Length headers help the server decode the data. GET queries don't have
any attached data, so this area is blank (that is, nothing is sent by the browser). For our purposes, only
POST queries use this third part of the HTTP request.

The following are the most useful headers sent in an HTTP request.

Host : www.youthere.int

This mandatory header line tells the server the hostname from the URL being requested. It
may sound odd to be telling a server its own name, but this header line was added in HTTP
1.1 to deal with cases where a single HTTP server answers requests for several different
hostnames.

User-Agent : Thing/1.23 details...

This optional header line identifies the make and model of this browser (virtual or otherwise).
For an interactive browser, it's usually something like Mozilla/4.76 [en] (Win98;
U) or Mozilla/4.0 (compatible; MSIE 5.12; Mac_PowerPC). By default,
LWP sends a User-Agent header of libwww-perl/5.64 (or whatever your exact
LWP version is).

Referer : http://www.thingamabob.int/stuff.html

This optional header line tells the remote server the URL of the page that contained a link to
the page being requested.

Accept-Language : en-US, en, es, de

This optional header line tells the remote server the natural languages in which the user would
prefer to see content, using language tags. For example, the above list means the user would
prefer content in U.S. English, or (in order of decreasing preference) any kind of English,
Spanish, or German. (Appendix D lists the most common language tags.) Many browsers do
not send this header, and those that do usually send the default header appropriate to the
version of the browser that the user installed. For example, if the browser is Netscape with a
Spanish-language interface, it would probably send Accept-Language: es, unless the
user has dutifully gone through the browser's preferences menus to specify other languages.

2.2.2 Response

The server's response also has three parts: the status line, some headers, and an optional body.

The status line states which protocol the server is speaking, then gives a numeric status code and a
short message. For example, "HTTP/1.1 404 Not Found." The numeric status codes are grouped—
200-299 are success, 400-499 are permanent failures, and so on. A full list of HTTP status codes is
given in Appendix B.

The header lines let the server send additional information about the response. For example, if
authentication is required, the server uses headers to indicate the type of authentication. The most
common header—almost always present for both successful and unsuccessful requests—is

Content-Type, which helps the browser interpret the body. Headers are terminated with a blank
line, which must be present even if no headers are sent.

Many responses contain a Content-Length line that specifies the length, in bytes, of the body.
However, this line is rarely present on dynamically generated pages, and because you never know
which pages are dynamically generated, you can't rely on that header line being there.

(Other, rarer header lines are used for specifying that the content has moved to a given URL, or that
the server wants the browser to send HTTP cookies, and so on; however, these things are generally
handled for you automatically by LWP.)

The body of the response follows the blank line and can be any arbitrary data. In the case of a typical
web request, this is the HTML document to be displayed. If an error occurs, the message body doesn't
contain the document that was requested but usually consists of a server-generated error message
(generally in HTML, but sometimes not) explaining the error.

2.3 LWP::Simple

GET is the simplest and most common type of HTTP request. Form parameters may be supplied in the
URL, but there is never a body to the request. The LWP::Simple module has several functions for
quickly fetching a document with a GET request. Some functions return the document, others save or
print the document.

2.3.1 Basic Document Fetch

The LWP::Simple module's get() function takes a URL and returns the body of the document:

$document =
get("http://www.suck.com/daily/2001/01/05/1.html");

If the document can't be fetched, get() returns undef. Incidentally, if LWP requests that URL
and the server replies that it has moved to some other URL, LWP requests that other URL and returns
that.

With LWP::Simple's get() function, there's no way to set headers to be sent with the GET request
or get more information about the response, such as the status code. These are important things,
because some web servers have copies of documents in different languages and use the HTTP
language header to determine which document to return. Likewise, the HTTP response code can let us
distinguish between permanent failures (e.g., "404 Not Found") and temporary failures ("505 Service
[Temporarily] Unavailable").

Even the most common type of nontrivial web robot (a link checker), benefits from access to response
codes. A 403 ("Forbidden," usually because of file permissions) could be automatically corrected,
whereas a 404 ("Not Found") error implies an out-of-date link that requires fixing. But if you want
access to these codes or other parts of the response besides just the main content, your task is no
longer a simple one, and so you shouldn't use LWP::Simple for it. The "simple" in LWP::Simple
refers not just to the style of its interface, but also to the kind of tasks for which it's meant.

2.3.2 Fetch and Store

One way to get the status code is to use LWP::Simple's getstore() function, which writes the
document to a file and returns the status code from the response:

$status =
getstore("http://www.suck.com/daily/2001/01/05/1.html",
 "/tmp/web.html");

There are two problems with this. The first is that the document is now stored in a file instead of in a
variable where you can process it (extract information, convert to another format, etc.). This is readily
solved by reading the file using Perl's built-in open() and <FH> operators; see below for an
example.

The other problem is that a status code by itself isn't very useful: how do you know whether it was
successful? That is, does the file contain a document? LWP::Simple offers the is_success()
and is_error() functions to answer that question:

$successful = is_success(status);
$failed = is_error(status);

If the status code status indicates a successful request (is in the 200-299 range), is_success(
) returns true. If status is an error (400-599), is_error() returns true. For example, this bit
of code saves the BookTV (CSPAN2) listings schedule and emits a message if Gore Vidal is
mentioned:

use strict;
use warnings;
use LWP::Simple;
my $url = 'http://www.booktv.org/schedule/';
my $file = 'booktv.html';
my $status = getstore($url, $file);
die "Error $status on $url" unless is_success($status);
open(IN, "<$file") || die "Can't open $file: $!";
while (<IN>) {
 if (m/Gore\s+Vidal/) {
 print "Look! Gore Vidal! $url\n";
 last;
 }
}
close(IN);

2.3.3 Fetch and Print

LWP::Simple also exports the getprint() function:

$status = getprint(url);

The document is printed to the currently selected output filehandle (usually STDOUT). In other
respects, it behaves like getstore(). This can be very handy in one-liners such as:

% perl -MLWP::Simple -e
"getprint('http://cpan.org/RECENT')||die" | grep Apache

That retrieves http://cpan.org/RECENT, which lists the past week's uploads in CPAN (it's a plain text
file, not HTML), then sends it to STDOUT, where grep passes through the lines that contain
"Apache."

2.3.4 Previewing with HEAD

LWP::Simple also exports the head() function, which asks the server, "If I were to request this
item with GET, what headers would it have?" This is useful when you are checking links. Although,
not all servers support HEAD requests properly, if head() says the document is retrievable, then it
almost definitely is. (However, if head() says it's not, that might just be because the server doesn't
support HEAD requests.)

The return value of head() depends on whether you call it in scalar context or list context. In
scalar context, it is simply:

$is_success = head(url);

If the server answers the HEAD request with a successful status code, this returns a true value.
Otherwise, it returns a false value. You can use this like so:

die "I don't think I'll be able to get $url" unless
head($url);

Regrettably, however, some old servers, and most CGIs running on newer servers, do not understand
HEAD requests. In that case, they should reply with a "405 Method Not Allowed" message, but some
actually respond as if you had performed a GET request. With the minimal interface that head()
provides, you can't really deal with either of those cases, because you can't get the status code on
unsuccessful requests, nor can you get the content (which, in theory, there should never be any).

In list context, head() returns a list of five values, if the request is successful:

(content_type, document_length, modified_time, expires,
server)
 = head(url);

The content_type value is the MIME type string of the form type/subtype; the most
common MIME types are listed in Appendix C. The document_length value is whatever is in
the Content-Length header, which, if present, should be the number of bytes in the document
that you would have gotten if you'd performed a GET request. The modified_time value is the
contents of the Last-Modified header converted to a number like you would get from Perl's
time() function. For normal files (GIFs, HTML files, etc.), the Last-Modified value is just
the modification time of that file, but dynamically generated content will not typically have a Last-
Modified header.

The last two values are rarely useful; the expires value is a time (expressed as a number like you
would get from Perl's time() function) from the seldom used Expires header, indicating when

the data should no longer be considered valid. The server value is the contents of the Server
header line that the server can send, to tell you what kind of software it's running. A typical value is
Apache/1.3.22 (Unix).

An unsuccessful request, in list context, returns an empty list. So when you're copying the return list
into a bunch of scalars, they will each get assigned undef. Note also that you don't need to save all
the values—you can save just the first few, as in Example 2-4.

Example 2-4. Link checking with HEAD

use strict;
use LWP::Simple;
foreach my $url (
 'http://us.a1.yimg.com/us.yimg.com/i/ww/m5v9.gif',
 'http://hooboy.no-such-host.int/',
 'http://www.yahoo.com',

'http://www.ora.com/ask_tim/graphics/asktim_header_main.gif',
 'http://www.guardian.co.uk/',
 'http://www.pixunlimited.co.uk/siteheaders/Guardian.gif',
) {
 print "\n$url\n";

 my ($type, $length, $mod) = head($url);
 # so we don't even save the expires or server values!

 unless (defined $type) {
 print "Couldn't get $url\n";
 next;
 }
 print "That $type document is ", $length || "???", " bytes
long.\n";
 if ($mod) {
 my $ago = time() - $mod;
 print "It was modified $ago seconds ago; that's about ",
 int(.5 + $ago / (24 * 60 * 60)), " days ago, at ",
 scalar(localtime($mod)), "!\n";
 } else {
 print "I don't know when it was last modified.\n";
 }
}

Currently, that program prints the following, when run:

http://us.a1.yimg.com/us.yimg.com/i/ww/m5v9.gif
That image/gif document is 5611 bytes long.
It was modified 251207569 seconds ago; that's about 2907 days
ago, at Thu Apr 14 18:00:00 1994!

http://hooboy.no-such-host.int/
Couldn't get http://hooboy.no-such-host.int/

http://www.yahoo.com
That text/html document is ??? bytes long.
I don't know when it was last modified.

http://www.ora.com/ask_tim/graphics/asktim_header_main.gif
That image/gif document is 8588 bytes long.
It was modified 62185120 seconds ago; that's about 720 days
ago, at Mon Apr 10 12:14:13 2000!

http://www.guardian.co.uk/
That text/html document is ??? bytes long.
I don't know when it was last modified.

http://www.pixunlimited.co.uk/siteheaders/Guardian.gif
That image/gif document is 4659 bytes long.
It was modified 24518302 seconds ago; that's about 284 days
ago, at Wed Jun 20 11:14:33 2001!

Incidentally, if you are using the very popular CGI.pm module, be aware that it exports a function
called head() too. To avoid a clash, you can just tell LWP::Simple to export every function it
normally would except for head():

use LWP::Simple qw(!head);
use CGI qw(:standard);

If not for that qw(!head), LWP::Simple would export head(), then CGI would export
head() (as it's in that module's :standard group), which would clash, producing a mildly
cryptic warning such as "Prototype mismatch: sub main::head ($) vs none." Because any program
using the CGI library is almost definitely a CGI script, any such warning (or, in fact, any message to
STDERR) is usually enough to abort that CGI with a "500 Internal Server Error" message.

2.4 Fetching Documents Without LWP::Simple

LWP::Simple is convenient but not all powerful. In particular, we can't make POST requests or set
request headers or query response headers. To do these things, we need to go beyond LWP::Simple.

The general all-purpose way to do HTTP GET queries is by using the do_GET() subroutine
shown in Example 2-5.

Example 2-5. The do_GET subroutine

use LWP;
my $browser;
sub do_GET {
 # Parameters: the URL,

 # and then, optionally, any header lines: (key,value,
key,value)
 $browser = LWP::UserAgent->new() unless $browser;
 my $resp = $browser->get(@_);
 return ($resp->content, $resp->status_line, $resp-
>is_success, $resp)
 if wantarray;
 return unless $resp->is_success;
 return $resp->content;
}

A full explanation of the internals of do_GET() is given in Chapter 3. Until then, we'll be using it
without fully understanding how it works.

You can call the do_GET() function in either scalar or list context:

doc = do_GET(URL [header, value, ...]);
(doc, status, successful, response) = do_GET(URL [header,
value, ...]);

In scalar context, it returns the document or undef if there is an error. In list context, it returns the
document (if any), the status line from the HTTP response, a Boolean value indicating whether the
status code indicates a successful response, and an object we can interrogate to find out more about
the response.

Recall that assigning to undef discards that value. For example, this is how you fetch a document
into a string and learn whether it is successful:

($doc, undef, $successful, undef) =
do_GET('http://www.suck.com/');

The optional header and value arguments to do_GET() let you add headers to the request. For
example, to attempt to fetch the German language version of the European Union home page:

$body = do_GET("http://europa.eu.int/",
 "Accept-language" => "de",
);

The do_GET() function that we'll use in this chapter provides the same basic convenience as
LWP::Simple's get() but without the limitations.

2.5 Example: AltaVista

Every so often, two people, somewhere, somehow, will come to argue over a point of English
spelling—one of them will hold up a dictionary recommending one spelling, and the other will hold
up a dictionary recommending something else. In olden times, such conflicts were tidily settled with a
fight to the death, but in these days of overspecialization, it is common for one of the spelling
combatants to say "Let's ask a linguist. He'll know I'm right and you're wrong!" And so I am

contacted, and my supposedly expert opinion is requested. And if I happen to be answering mail that
month, my response is often something like:

Dear Mr. Hing:

I have read with intense interest your letter detailing your struggle with the question
of whether your favorite savory spice should be spelled in English as "asafoetida" or
whether you should heed your secretary's admonishment that all the kids today are
spelling it "asafetida."

I could note various factors potentially involved here; notably, the fact that in many
cases, British/Commonwealth spelling retains many "ae"/"oe" digraphs whereas
U.S./Canadian spelling strongly prefers an "e" ("foetus"/"fetus," etc.). But I will
instead be (merely) democratic about this and note that if you use AltaVista
(http://altavista.com, a well-known search engine) to run a search on "asafetida," it
will say that across all the pages that AltaVista has indexed, there are "about 4,170"
matched; whereas for "asafoetida" there are many more, "about 8,720."

So you, with the "oe," are apparently in the majority.

To automate the task of producing such reports, I've written a small program called alta_count, which
queries AltaVista for each term given and reports the count of documents matched:

% alta_count asafetida asafoetida
asafetida: 4,170 matches
asafoetida: 8,720 matches

At time of this writing, going to http://altavista.com, putting a word or phrase in the search box, and
hitting the Submit button yields a result page with a URL that looks like this:

http://www.altavista.com/sites/search/web?q=%22asafetida%22&kl
=XX

Now, you could construct these URLs for any phrase with something like:

$url = 'http://www.altavista.com/sites/search/web?q=%22'
 . $phrase
 . '%22&kl=XX' ;

But that doesn't take into account the need to encode characters such as spaces in URLs. If I want to
run a search on the frequency of "boy toy" (as compared to the alternate spelling "boytoy"), the space
in that phrase needs to be encoded as %20, and if I want to run a search on the frequency of "résumé,"
each "é" needs to be encoded as %E9.

The correct way to generate the query strings is to use the URI::Escape module:

use URI::Escape; # That gives us the uri_escape function
$url = 'http://www.altavista.com/sites/search/web?q=%22'
 . uri_escape($phrase)
 . '%22&kl=XX' ;

Now we just have to request that URL and skim the returned content for AltaVista's standard phrase
"We found [number] results." (That's assuming the response comes with an okay status code, as we
should get unless AltaVista is somehow down or inaccessible.)

Example 2-6 is the complete alta_count program.

Example 2-6. The alta_count program

#!/usr/bin/perl -w
use strict;
use URI::Escape;
foreach my $word (@ARGV) {
 next unless length $word; # sanity-checking
 my $url = 'http://www.altavista.com/sites/search/web?q=%22'
 . uri_escape($word) . '%22&kl=XX';
 my ($content, $status, $is_success) = do_GET($url);
 if (!$is_success) {
 print "Sorry, failed: $status\n";
 } elsif ($content =~ m/>We found ([0-9,]+) results?/) { #
like "1,952"
 print "$word: $1 matches\n";
 } else {
 print "$word: Page not processable, at $url\n";
 }
 sleep 2; # Be nice to AltaVista's servers!!!
}

And then my favorite do_GET routine:
use LWP; # loads lots of necessary classes.
my $browser;
sub do_GET {
 $browser = LWP::UserAgent->new unless $browser;
 my $resp = $browser->get(@_);
 return ($resp->content, $resp->status_line, $resp-
>is_success, $resp)
 if wantarray;
 return unless $resp->is_success;
 return $resp->content;
}

With that, I can run:

% alta_count boytoy 'boy toy'
boytoy: 6,290 matches
boy toy: 26,100 matches

knowing that when it searches for the frequency of "boy toy," it is duly URL-encoding the space
character.

This approach to HTTP GET query parameters, where we insert one or two values into an otherwise
precooked URL, works fine for most cases. For a more general approach (where we produce the part
after the ? completely from scratch in the URL), see Chapter 5.

2.6 HTTP POST

Some forms use GET to submit their parameters to the server, but many use POST. The difference is
POST requests pass the parameters in the body of the request, whereas GET requests encode the
parameters into the URL being requested.

Babelfish (http://babelfish.altavista.com) is a service that lets you translate text from one human
language into another. If you're accessing Babelfish from a browser, you see an HTML form where
you paste in the text you want translated, specify the language you want it translated from and to, and
hit Translate. After a few seconds, a new page appears, with your translation.

Behind the scenes, the browser takes the key/value pairs in the form:

urltext = I like pie
lp = en_fr
enc = utf8

and rolls them into a HTTP request:

POST /translate.dyn HTTP/1.1
Host: babelfish.altavista.com
User-Agent: SuperDuperBrowser/14.6
Content-Type: application/x-www-form-urlencoded
Content-Length: 40

urltext=I%20like%20pie&lp=en_fr&enc=utf8

Just as we used a do_GET() function to automate a GET query, Example 2-7 uses a do_POST(
) function to automate POST queries.

Example 2-7. The do_POST subroutine

use LWP;
my $browser;
sub do_POST {
 # Parameters:
 # the URL,
 # an arrayref or hashref for the key/value pairs,
 # and then, optionally, any header lines: (key,value,
key,value)
 $browser = LWP::UserAgent->new() unless $browser;
 my $resp = $browser->post(@_);
 return ($resp->content, $resp->status_line, $resp-
>is_success, $resp)
 if wantarray;

 return unless $resp->is_success;
 return $resp->content;
}

Use do_POST() like this:

doc = do_POST(URL, [form_ref, [headers_ref]]);
(doc, status, success, resp) = do_GET(URL, [form_ref,
[headers_ref]]);

The return values in scalar and list context are as for do_GET(). The form_ref parameter is a
reference to a hash containing the form parameters. The headers_ref parameter is a reference to
a hash containing headers you want sent in the request.

2.7 Example: Babelfish

Submitting a POST query to Babelfish is as simple as:

my ($content, $message, $is_success) = do_POST(
 'http://babelfish.altavista.com/translate.dyn',
 ['urltext' => "I like pie", 'lp' => "en_fr", 'enc' =>
'utf8'],
);

If the request succeeded ($is_success will tell us this), $content will be an HTML page that
contains the translation text. At time of this writing, the translation is inside the only textarea
element on the page, so it can be extracted with just this regexp:

$content =~ m{<textarea.*?>(.*?)</textarea>}is;

The translated text is now in $1, if the match succeeded.

Knowing this, it's easy to wrap this whole procedure up in a function that takes the text to translate
and a specification of what language from and to, and returns the translation. Example 2-8 is such a
function.

Example 2-8. Using Babelfish to translate

sub translate {
 my ($text, $language_path) = @_;

 my ($content, $message, $is_success) = do_POST(
 'http://babelfish.altavista.com/translate.dyn',
 ['urltext' => $text, 'lp' => $language_path, 'enc' =>
'utf8'],
);
 die "Error in translation $language_path: $message\n"
 unless $is_success;

 if ($content =~ m{<textarea.*?>(.*?)</textarea>}is) {
 my $translation;
 $translation = $1;
 # Trim whitespace:
 $translation =~ s/\s+/ /g;
 $translation =~ s/^ //s;
 $translation =~ s/ $//s;
 return $translation;
 } else {
 die "Can't find translation in response to
$language_path";
 }
}

The translate() subroutine constructs the request and extracts the translation from the
response, cleaning up any whitespace that may surround it. If the request couldn't be completed, the
subroutine throws an exception by calling die().

The translate() subroutine could be used to automate on-demand translation of important
content from one language to another. But machine translation is still a fairly new technology, and the
real value of it is to be found in translating from English into another language and then back into
English, just for fun. (Incidentally, there's a CPAN module that takes care of all these details for you,
called Lingua::Translate, but here we're interested in how to carry out the task, rather than whether
someone's already figured it out and posted it to CPAN.)

The alienate program given in Example 2-9 does just this (the definitions of translate() and
do_POST() have been omitted from the listing for brevity).

Example 2-9. The alienate program

#!/usr/bin/perl -w
alienate - translate text
use strict;
my $lang;
if (@ARGV and $ARGV[0] =~ m/^-(\w\w)$/s) {
 # If the language is specified as a switch like "-fr"
 $lang = lc $1;
 shift @ARGV;
} else {
 # Otherwise just pick a language at random:
 my @languages = qw(it fr de es ja pt);
 # I.e.: Italian, French, German, Spanish, Japanese,
Portugese.
 $lang = $languages[rand @languages];
}

die "What to translate?\n" unless @ARGV;
my $in = join(' ', @ARGV);

print " => via $lang => ",
 translate(
 translate($in, 'en_' . $lang),
 $lang . '_en'
), "\n";
exit;

definitions of do_POST() and translate() go here

Call the alienate program like this:

% alienate [-lang] phrase

Specify a language with -lang, for example -fr to translate via French. If you don't specify a
language, one will be randomly chosen for you. The phrase to translate is taken from the command
line following any switches.

Here are some runs of alienate:

% alienate -de "Pearls before swine!"
=> via de => Beads before pigs!

% alienate "Bond, James Bond"
=> via fr => Link, Link Of James

% alienate "Shaken, not stirred"
=> via pt => Agitated, not agitated

% alienate -it "Shaken, not stirred"
=> via it => Mental patient, not stirred

% alienate -it "Guess what! I'm a computer!"
=> via it => Conjecture that what! They are a calculating!

% alienate 'It was more fun than a barrel of monkeys'
=> via de => It was more fun than a barrel drop hammer

% alienate -ja 'It was more fun than a barrel of monkeys'
=> via ja => That the barrel of monkey at times was many
pleasures

Chapter 3. The LWP Class Model

For full access to every part of an HTTP transaction—request headers and body, response status line,
headers and body—you have to go beyond LWP::Simple, to the object-oriented modules that form the
heart of the LWP suite. This chapter introduces the classes that LWP uses to represent browser objects
(which you use for making requests) and response objects (which are the result of making a request).
You'll learn the basic mechanics of customizing requests and inspecting responses, which we'll use in
later chapters for cookies, language selection, spidering, and more.

3.1 The Basic Classes

In LWP's object model, you perform GET, HEAD, and POST requests via a browser object (a.k.a. a
user agent object) of class LWP::UserAgent, and the result is an HTTP response of the aptly named
class HTTP::Response. These are the two main classes, with other incidental classes providing
features such as cookie management and user agents that act as spiders. Still more classes deal with
non-HTTP aspects of the Web, such as HTML. In this chapter, we'll deal with the classes needed to
perform web requests.

The classes can be loaded individually:

use LWP::UserAgent;
use HTTP::Response;

But it's easiest to simply use the LWP convenience class, which loads LWP::UserAgent and
HTTP::Response for you:

use LWP; # same as previous two lines

If you're familiar with object-oriented programming in Perl, the LWP classes will hold few real
surprises for you. All you need is to learn the names of the basic classes and accessors. If you're not
familiar with object-oriented programming in any language, you have some catching up to do.
Appendix G will give you a bit of conceptual background on the object-oriented approach to things.
To learn more (including information on how to write your own classes), check out Programming
Perl (O'Reilly).

3.2 Programming with LWP Classes

The first step in writing a program that uses the LWP classes is to create and initialize the browser
object, which can be used throughout the rest of the program. You need a browser object to perform
HTTP requests, and although you could use several browser objects per program, I've never run into a
reason to use more than one.

The browser object can use a proxy (a server that fetches web pages for you, such as a firewall, or a
web cache such as Squid). It's good form to check the environment for proxy settings by calling
env_proxy():

use LWP::UserAgent;
my $browser = LWP::UserAgent->new();

$browser->env_proxy(); # if we're behind a firewall

That's all the initialization that most user agents will ever need. Once you've done that, you usually
won't do anything with it for the rest of the program, aside from calling its get(), head(), or
post() methods, to get what's at a URL, or to perform HTTP HEAD or POST requests on it. For
example:

$url = 'http://www.guardian.co.uk/';
my $response = $browser->get($url);

Then you call methods on the response to check the status, extract the content, and so on. For
example, this code checks to make sure we successfully fetched an HTML document that isn't
worryingly short, then prints a message depending on whether the words "Madonna" or "Arkansas"
appear in the content:

die "Hmm, error \"", $response->status_line(),
 "\" when getting $url" unless $response->is_success();
my $content_type = $response->content_type();
die "Hm, unexpected content type $content_type from $url"
 unless $content_type eq 'text/html';
my $content = $response->content();
die "Odd, the content from $url is awfully short!"
 if length($content) < 3000;
if($content =~ m/Madonna|Arkansas/i) {
 print "<!-- The news today is IMPORTANT -->\n",
 $content;
} else {
 print "$url has no news of ANY CONCEIVABLE IMPORTANCE!\n";
}

As you see, the response object contains all the data from the web server's response (or an error
message about how that server wasn't reachable!), and we use method calls to get at the data. There
are accessors for the different parts of the response (e.g., the status line) and convenience functions to
tell us whether the response was successful (is_success()).

And that's a working and complete LWP program!

3.3 Inside the do_GET and do_POST Functions

You now know enough to follow the do_GET() and do_POST() functions introduced in
Chapter 2. Let's look at do_GET() first.

Start by loading the module, then declare the $browser variable that will hold the user agent. It's
declared outside the scope of the do_GET() subroutine, so it's essentially a static variable,
retaining its value between calls to the subroutine. For example, if you turn on support for HTTP
cookies, this browser could persist between calls to do_GET(), and cookies set by the server in
one call would be sent back in a subsequent call.

use LWP;

my $browser;
sub do_GET {

Next, create the user agent if it doesn't already exist:

$browser = LWP::UserAgent->new() unless $browser;

Enable proxying, if you're behind a firewall:

$browser->env_proxy();

Then perform a GET request based on the subroutine's parameters:

my $response = $browser->request(@_);

In list context, you return information provided by the response object: the content, status line, a
Boolean indicating whether the status meant success, and the response object itself:

return($response->content, $response->status_line, $response-
>is_success, $response)
 if wantarray;

If there was a problem and you called in scalar context, we return undef:

return unless $response->is_success;

Otherwise we return the content:

 return $response->content;
}

The do_POST() subroutine is just like do_GET(), only it uses the post() method instead
of get().

The rest of this chapter is a detailed reference to the two classes we've covered so far:
LWP::UserAgent and HTTP::Response.

3.4 User Agents

The first and simplest use of LWP's two basic classes is LWP::UserAgent, which manages HTTP
connections and performs requests for you. The new() constructor makes a user agent object:

$browser = LWP::UserAgent->new(%options);

The options and their default values are summarized in Table 3-1. The options are attributes
whose values can be fetched or altered by the method calls described in the next section.

Table 3-1. Constructor options and default values for LWP::UserAgent

Key Default

agent "libwww-perl/#.###"

conn_cache undef

cookie_jar undef

from undef

max_size undef

parse_head 1

protocols_allowed undef

protocols_forbidden undef

requests_redirectable ['GET', 'HEAD']

timeout 180

If you have a user agent object and want a copy of it (for example, you want to run the same requests
over two connections, one persistent with KeepAlive and one without) use the clone() method:

$copy = $browser->clone();

This object represents a browser and has attributes you can get and set by calling methods on the
object. Attributes modify future connections (e.g., proxying, timeouts, and whether the HTTP
connection can be persistent) or the requests sent over the connection (e.g., authentication and
cookies, or HTTP headers).

3.4.1 Connection Parameters

The timeout() attribute represents how long LWP will wait for a server to respond to a request:

$oldval = $browser->timeout([newval]);

That is, if you want to set the value, you'd do it like so:

$browser->timeout(newval);

And if you wanted to read the value, you'd do it like this:

$value = $browser->timeout();

And you could even set the value and get back the old value at the same time:

$previously = $browser->timeout(newval);

The default value of the timeout attribute is 180 seconds. If you're spidering, you might want to
change this to a lower number to prevent your spider from wasting a lot of time on unreachable sites:

$oldval = $browser->timeout();
$browser->timeout(10);
print "Changed timeout from $oldval to 10\n";

Changed timeout from 180 to 10

The max_size() method limits the number of bytes of an HTTP response that the user agent
will read:

$size = $browser->max_size([bytes])

The default value of the max_size() attribute is undef, signifying no limit. If the maximum
size is exceeded, the response will have a Client-Aborted header. Here's how to test for that:

$response = $browser->request($req);
if ($response->header("Client-Aborted")) {
 warn "Response exceeded maximum size."
}

To have your browser object support HTTP Keep-Alive, call the conn_cache() method to
a connection cache object, of class LWP::ConnCache. This is done like so:

use LWP::ConnCache;
$cache = $browser->conn_cache(LWP::ConnCache->new());

The newly created connection cache object will cache only one connection at a time. To have it cache
more, you access its total_capacity attribute. Here's how to increase that cache to 10
connections:

$browser->conn_cache->total_capacity(10);

To cache all connections (no limits):

$browser->conn_cache->total_capacity(undef);

3.4.2 Request Parameters

The agent() attribute gets and sets the string that LWP sends for the User-Agent header:

$oldval = $browser->agent([agent_string]);

Some web sites use this string to identify the browser. To pretend to be Netscape to get past web
servers that check to see whether you're using a "supported browser," do this:

print "My user agent name is ", $browser->agent(), ".\n";
$browser->agent("Mozilla/4.76 [en] (Windows NT 5.0; U)");
print "And now I'm calling myself ", $browser->agent(),
"!\n";
My user agent name is libwww-perl/5.60.
And now I'm calling myself Mozilla/4.76 [en] (Windows NT 5.0;
U)!

The from() attribute controls the From header, which contains the email address of the user
making the request:

$old_address = $browser->from([email_address]);

The default value is undef, which indicates no From header should be sent.

The user agent object can manage the sending and receiving of cookies for you. Control this with the
cookie_jar() method:

$old_cj_obj = $browser->cookie_jar([cj_obj])

This reads or sets the HTTP::Cookies object that's used for holding all this browser's cookies. By
default, there is no cookie jar, in which case the user agent ignores cookies.

To create a temporary cookie jar, which will keep cookies only for the duration of the user agent
object:

$browser->cookie_jar(HTTP::Cookies->new);

To use a file as a persistent store for cookies:

my $some_file = '/home/mojojojo/cookies.lwp';
$browser->cookie_jar(HTTP::Cookies->new(
 'file' => $some_file, 'autosave' => 1
));

Cookies are discussed in more detail in Chapter 11.

3.4.3 Protocols

LWP allows you to control the protocols with which a user agent can fetch documents. You can
choose to allow only a certain set of protocols, or allow all but a few. You can also test a protocol to
see whether it's supported by LWP and by this particular browser object.

The protocols_allowed() and protocols_forbidden() methods explicitly
permit or forbid certain protocols (e.g., FTP or HTTP) from being used by this user agent:

$aref_maybe = $browser->protocols_allowed([\@protocols]);
$aref_maybe = $browser->protocols_forbidden([\@protocols]);

Call the methods with no arguments to get an array reference containing the allowed or forbidden
protocols, or undef if the attribute isn't set. By default, neither is set, which means that this browser
supports all the protocols that your installation of LWP supports.

For example, if you're processing a list of URLs and don't want to parse them to weed out the FTP
URLs, you could write this:

$browser->protocols_forbidden(["ftp"]);

Then you can blindly execute requests, and any ftp URLs will fail automatically. That is, if you
request an ftp URL, the browser object returns an error response without performing any actual
request.

Instead of forbidden protocols, you can specify which to allow by using the
protocols_allowed method. For example, to set this browser object to support only http
and gopher URLs, you could write this:

$browser->protocols_allowed(["http", "gopher"]);

To check if LWP and this particular browser support a particular URL protocol, use the
is_protocol_supported() method. It returns true if LWP supports the protocol, isn't in
protocols_forbidden, and it has been allowed in a protocols_allowed list set. You
call it like this:

$boolean = $browser->is_protocol_supported(scheme);

For example:

unless ($browser->is_protocol_supported("https")) {
 warn "Cannot process https:// URLs.\n";
}

3.4.4 Redirection

A server can reply to a request with a response that redirects the user agent to a new location. A user
agent can automatically follow redirections for you. By default, LWP::UserAgent objects follow GET
and HEAD method redirections.

The requests_redirectable() attribute controls the list of methods for which the user
agent will automatically follow redirections:

$aref = $browser->requests_redirectable([\@methods]);

To disable the automatic following of redirections, pass in a reference to an empty array:

$browser->requests_redirectable([]);

To add POST to the list of redirectable methods:

push @{$browser->requests_redirectable}, 'POST';

You can test a request to see whether the method in that request is one for which the user agent will
follow redirections:

$boolean = $browser->redirect_ok(request);

The redirect_ok() method returns true if redirections are permitted for the method in the
request.

3.4.5 Authentication

The user agent can manage authentication information for a series of requests to the same site. The
credentials() method sets a username and password for a particular realm on a site:

$browser->credentials(host_port, realm, uname, pass);

A realm is a string that's used to identify the locked-off area on the given server and port. In
interactive browsers, the realm is the string that's displayed as part of the pop-up window that appears.
For example, if the pop-up window says "Enter username for Unicode-MailList-Archives at
www.unicode.org," then the realm string is Unicode-MailList-Archives, and the
host_port value is www.unicode.org:80. (The browser doesn't typically show the :80
part for HTTP, nor the :443 part for HTTPS, as those are the default port numbers.)

The username, password, and realm can be sent for every request whose hostname and port match the
one given in host_port, and that require authorization. For example:

$browser->credentials("intranet.example.int:80", "Finances",
 "fred", "3l1t3");

From that point on, any requests this browser makes to port 80 that require authentication with a realm
name of "Finances," will be tried with a username "fred" and a password "3l1t3."

For more information on authentication, see Chapter 11.

3.4.6 Proxies

One potentially important function of the user agent object is managing proxies. The env_proxy(
) method configures the proxy settings:

$browser->env_proxy();

This method inspects proxy settings from environment variables such as http_proxy,
gopher_proxy, and no_proxy. If you don't use a proxy, those environment variables aren't set,
and the call to env_proxy() has no effect.

To set proxying from within your program, use the proxy() and no_proxy() methods. The
proxy() method sets or retrieves the proxy for a particular scheme:

$browser->proxy(scheme, proxy);
$browser->proxy(\@schemes, proxy);
$proxy = $browser->proxy(scheme);

The first two forms set the proxy for one or more schemes. The third form returns the proxy for a
particular scheme. For example:

$p = $browser->proxy("ftp");
$browser->proxy("ftp", "http://firewall:8001/");

print "Changed proxy from $p to our firewall.\n";

The no_proxy() method lets you disable proxying for particular domains:

$browser->no_proxy([domain, ...]);

Pass a list of domains to no_proxy() to add them to the list of domains that are not proxied
(e.g., those within your corporate firewall). For example:

$browser->no_proxy("c64.example.int", "localhost", "server");

Call no_proxy() with no arguments to clear the list of unproxied domains:

$browser->no_proxy(); # no exceptions to proxying

3.4.7 Request Methods

There are three basic request methods:

$resp = $browser->get(url);
$resp = $browser->head(url);
$resp = $browser->post(url, \@form_data);

If you're specifying extra header lines to be sent with the request, do it like this:

$resp = $browser->get(url, Header1 => Value1, Header2 =>
Value2, ...);
$resp = $browser->head(url, Header1 => Value1, Header2 =>
Value2, ...);
$resp = $browser->post(url, \@form_data,
 Header1 => Value1, Header2 => Value2,
...);

For example:

$resp = $browser->get("http://www.nato.int",
 'Accept-Language' => 'en-US',
 'Accept-Charset' => 'iso-8859-1,*,utf-8',
 'Accept-Encoding' => 'gzip',
 'Accept' =>
 "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*",
);

3.4.7.1 Saving response content to a file

With normal requests, the body of the response is stored in the response object's $response-
>content() attribute by default. That's fine when the response body is a moderately small piece

of data such as a 20-kilobyte HTML file. But a 6-megabyte MP3 file should probably be saved to disk
without saving it in memory first.

The request methods support this by providing sort of fake header lines that don't turn into real
headers in the request but act as options for LWP's handling of the request. Each option/header starts
with a ":" character, a character that no real HTTP header name could contain. The simplest option is
':content_file' => filename.

$resp = $browser->get(url, ':content_file' => filename, ...);
$resp = $browser->head(url, ':content_file' => filename, ...);
$resp = $browser->post(url, \@form_data,
 ':content_file' => filename, ...);

With this option, the content of the response is saved to the given filename, overwriting whatever
might be in that file already. (In theory, no response to a HEAD request should ever have content, so it
seems odd to specify where content should be saved. However, in practice, some strange servers and
many CGIs on otherwise normal servers do respond to HEAD requests as if they were GET requests.)

A typical example:

my $out = 'weather_satellite.jpg';
my $resp = $browser->get('http://weathersys.int/',
 ':content_file' => $out,
);
die "Couldn't get the weather picture: ", $response-
>status_line
 unless $response->is_success;

This feature is also useful for cases in which you were planning on saving the content to that file
anyway. Also see the mirror() method described below, which does something similar to
$browser->get($url, ':content_file' => filename, ...).

3.4.7.2 Sending response content to a callback

If you instead provide an option/header pair consisting of ':content_cb' and a subroutine
reference, LWP won't save the content in memory or to a file but will instead call the subroutine every
so often, as new data comes in over the connection to the remote server. This is the syntax for
specifying such a callback routine:

$resp = $browser->get(url, ':content_cb' => \&mysub, ...);
$resp = $browser->head(url, ':content_cb' => \&mysub, ...);
$resp = $browser->post(url, \@form_data,
 ':content_cb' => \&mysub, ...);

Whatever subroutine you define will get chunks of the newly received data passed in as the first
parameter, and the second parameter will be the new HTTP::Response object that will eventually get
returned from the current get/head/post call. So you should probably start every callback routine
like this:

sub callbackname {

 my($data, $response) = @_;
 ...

Here, for example, is a routine that hex-dumps whatever data is received as a response to this request:

my $resp = $browser->get('http://www.perl.com'
 ':content_cb' => \&hexy,
);
sub hexy {
 my($data, $resp) = @_;
 print length($data), " bytes:\n";
 print ' ', unpack('H*', substr($data,0,16,'')), "\n"
 while length $data;
 return;
}

In fact, you can pass an anonymous routine as the callback. The above could just as well be expressed
like this:

my $resp = $browser->get('http://www.perl.com/'
 ':content_cb' => sub {
 my($data, $resp) = @_;
 print length($data), " bytes:\n";
 print ' ', unpack('H*', substr($data,0,16,'')), "\n"
 while length $data;
 return;
 }
);

The size of the $data string is unpredictable. If it matters to you how big each is, you can specify
another option, :read_size_hint => byte_count, which LWP will take as a hint for how
many bytes you want the typical $data string to be:

$resp = $browser->get(url,
 ':content_cb' => \&mysub,
 ':read_size_hint' => byte_count,
 ...,
);
$resp = $browser->head(url,
 ':content_cb' => \&mysub,
 ':read_size_hint' => byte_count,
 ...,
);
$resp = $browser->post(url, \@form_data,
 ':content_cb' => \&mysub,
 ':read_size_hint' => byte_count,
 ...,
);

We can modify our hex-dumper routine to be called like this:

my $resp = $browser->get('http://www.perl.com'
':content_cb' => \&hexy,
':read_size_hint' => 1024,
);

However, there is no guarantee that's how big the $data string will actually be. It is merely a hint,
which LWP may disregard.

3.4.7.3 Mirroring a URL to a file

The mirror() method GETs a URL and stores the result to a file:

$response = $browser->mirror(url_to_get, filename)

But it has the added feature that it uses an HTTP If-Modified-Since header line on the
request it performs, to avoid transferring the remote file unless it has changed since the local file
(filename) was last changed. The mirror() method returns a new HTTP::Response object
but without a content attribute (any interesting content will have been written to the local file).
You should at least check $response->is_error():

$response = $browser->mirror("http://www.cpan.org/",
 "cpan_home.html");
if($response->is_error()){
 die "Couldn't access the CPAN home page: " .
 $response->status_line;
}

3.4.8 Advanced Methods

The HTML specification permits meta tags in the head of a document, some of which are
alternatives to HTTP headers. By default, if the Response object is an HTML object, its head section
is parsed, and some of the content of the head tags is copied into the HTTP::Response object's
headers. For example, consider an HTML document that starts like this:

<html>
<head><title>Kiki's Pie Page</title>
 <base href="http://cakecity.int/">
 <meta name="Notes" content="I like pie!">
 <meta http-equiv="Description" content="PIE RECIPES FROM
KIKI">
</head>

If you request that document and call print $response->headers_as_string on it,
you'll see this:

Date: Fri, 05 Apr 2002 11:19:51 GMT

Accept-Ranges: bytes
Server: Apache/1.3.23
Content-Base: http://cakecity.int/
Content-Length: 204
Content-Type: text/html
Last-Modified: Fri, 05 Apr 2002 11:19:38 GMT
Client-Date: Fri, 05 Apr 2002 11:19:51 GMT
Description: PIE RECIPES FROM KIKI
Title: Kiki's Pie Page
X-Meta-Notes: I like pie!

You can access those headers individually with $response->header('Content-Base'),
$response->header('Description'), $response->header('Title'), and
$response->header('X-Meta-Notes'), respectively, as we shall see in the next
section.

The documentation for the HTML::HeadParser module, which LWP uses to implement this feature,
explains the exact details

3.5 HTTP::Response Objects

You have to manually create most objects your programs work with by calling an explicit constructor,
with the syntax ClassName->new(). HTTP::Response objects are a notable exception. You
never need to call HTTP::Response->new() to make them; instead, you just get them back
as the result of a request made with one of the request methods (get(), post(), and head(
)).

That is, when writing web clients, you never need to create a response yourself. Instead, a user agent
creates it for you, to encapsulate the results of a request it made. You do, however, interrogate a
response object's attributes. For example, the code() method returns the HTTP status code:

print "HTTP status: ", $response->code(), "\n";
HTTP status: 404

HTTP::Response objects also have convenience methods. For example, is_success() returns
a true value if the response had a successful HTTP status code, or false if it didn't (e.g., 404, 403, 500,
etc.). Always check your responses, like so:

die "Couldn't get the document"
 unless $response->is_success();

You might prefer something a bit more verbose, like this:

Given $response and $url ...
die "Error getting $url\n", $response->status_line
 unless $response->is_success();

3.5.1 Status Line

The status_line() method returns the entire HTTP status line:

$sl = $response->status_line();

This includes both the numeric code and the explanation. For example:

$resp = $browser->get("http://www.cpan.org/nonesuch");
print $response->status_line();
404 Not Found

To get only the status code, use the code() method:

$code = $response->code();

To access only the explanatory message, use the message() method:

$msg = $response->message();

For example:

$resp = $browser->get("http://www.cpan.org/nonesuch");
print $response->code(), " (that means ", $response->message(
), ")\n";
404 (that means Not Found)

Four methods test for types of status codes in the response: is_error(), is_success(),
is_redirect(), and is_info(). They return true if the status code corresponds to an
error, a successful fetch, a redirection, or informational (e.g., "102 Processing").

$boolean = $response->is_error();
$boolean = $response->is_success();
$boolean = $response->is_redirect();
$boolean = $response->is_info();

Exactly what codes count as what sort of status, is explained in greater detail in Appendix B.

3.5.2 Content

Most responses contain content after their headers. This content is accessible with the content()
method:

$the_file_data = $response->content();

In some cases, it's easier (and more efficient) to get a scalar reference to the content, instead of the
value of the content itself. For that, use the content_ref() method:

$data_ref = $response->content_ref();

For example in Chapter 7, we use a class called HTML::TokeParser that parses HTML starting with a
reference to a big block of HTML source. We could use that module to parse the HTML in an
HTTP::Response object by using do{ my $x = $response->content(); \$x}, but we
could avoid the unnecessary copying by just using $response->content_ref().

3.5.3 Headers

To fetch the value of an HTTP header in the response, use the header() method:

$value = $response->header(header_name);

For example, if you know there will be useful data in a header called Description, access it as
$response->header('Description'). The header() method returns undef if
there is no such header in this response.

HTTP::Response provides some methods for accessing the most commonly used header fields:

$type = $response->content_type();

The Content-Type header contains the MIME type of the body. This is "text/html" for HTML
files, "image/jpeg" for JPEG files, and so on. Appendix C contains a list of common MIME types.

$length = $response->content_length();

The Content-Length header contains the size of the body (in bytes) sent from the browser but is
not always present. If you need the real length of the response, use length($response-
>content).

$lm = $response->last_modified();

The Last-Modified header contains a timestamp indicating when the content was last modified,
but it is sometimes not present.

$encoding = response->content_encoding();

The Content-Encoding header contains the name of the character set this document is declared
as using. The most common value is iso-8859-1 meaning Latin-1. An increasingly common
runner-up is utf-8, meaning Unicode expressed in the UTF-8 encoding. Less-common encodings
are listed in Appendix E. But be warned: this header is occasionally inaccurate, in cases where content
is clearly in one encoding, but the document fails to declare it as such. For example, a document might
be in Chinese in the big5 encoding but might erroneously report itself as being in iso-8859-1.

This brings us to a regrettably even less-used header:

$language = $response->content_language();

Rarely present, the Content-Language header contains the language tag(s) for the document's
content. Appendix D lists common language tags.

If you want to get all the headers as one string, call $response->headers_as_string.
This is useful for debugging, as in:

print "Weird response!!\n",
 $response->headers_as_string, "\n\n"
unless $response->content_type();

3.5.4 Expiration Times

Most servers send a Date header as well as an Expires or Last-Modified header with their
responses. Four methods on HTTP::Response objects use these headers to calculate the age of the
document and various caching statistics.

The current_age() method returns the number of seconds since the server sent the document:

$age = $response->current_age();

For example:

$age = $response->current_age();
$days = int($age/86400); $age -= $days * 86400;
$hours = int($age/3600); $age -= $hours * 3600;
$mins = int($age/60); $age -= $minutes * 60;
$secs = $age;
print "The document is $days days, $hours hours, $mins
minutes, and $secs
seconds old.\n";
The document is 0 days, 0 hours, 5 minutes, and 33
seconds old.

The freshness_lifetime() method returns the number of seconds until the document
expires:

$lifetime = $response->freshness_lifetime();

For example:

$time = $response->freshness_lifetime();
$days = int($time/86400); $time -= $days * 86400;
$hours = int($time/3600); $time -= $hours * 3600;
$mins = int($time/60); $time -= $mins * 60;
$secs = int($time);
print "The document expires in $days days, $hours hours, $mins
minutes, and
$secs seconds.\n";
The document expires in 0 days, 23 hours, 6 minutes, and 15
seconds.

The is_fresh() method returns true if the document has not expired yet:

$boolean = $response->is_fresh();

If the document is not fresh, your program should reissue the request to the server. This is an issue
only if your program runs for a long time and you keep responses for later interrogation.

The fresh_until() entry returns the time when the document expires:

$expires = $response->fresh_until();

For example:

$expires = $response->fresh_until();
print "This document is good until ",
scalar(localtime($expires)), "\n";
This document is good until Tue Feb 26 07:36:08 2004

3.5.5 Base for Relative URLs

An HTML document can have relative URLs in it. For example:

This generally refers to the my_face.gif that's located in the same directory as the HTML page.
Turning these relative URLs into absolute URLs that can be requested via LWP is covered in the next
chapter. To do that, you must know the URL of the current page.

The base() method returns the URL of the document in the response.

$url = $response->base();

This base URL is normally the URL you requested but can sometimes differ: if there was a redirection
(which LWP normally follows through on), the URL of the final response isn't the same as the
requested URL. Moreover, the Base, Content-Base, and Content-Location headers in
a response specify the address against which you resolve relative URLs. And finally, if the response
content is an HTML document and has a <base href="..."> tag in its head, that definitively
sets the base URL.

3.5.6 Debugging

When an error occurs (as indicated by the is_error() method), error_as_HTML()
returns an error page in HTML:

$error_page = $response->error_as_HTML();
print "The server
said:\n<blockquote>$error_page</blockquote>\n";

Because a user agent can follow redirections and automatically answer authentication challenges, the
request you gave to the user agent object might not be the request represented by your object. That is,
you could have said to get one URL, but that could have directed to another, which could have

redirected to another, producing not one response but a chain of responses. For the sake of simplicity,
you get back only the one $response object, which is the last in the chain. But if you need to, you
can work your way back, using the previous() method:

$previous_response = $response->previous();

The previous() method returns undef when there is no previous method (i.e., on the
response to the request you gave the user agent, at the head of the chain). Moreover, each response
stores the HTTP::Request object that LWP used for making the request, and you can access it with the
$response->request(). HTTP::Request objects support most of the same methods as
HTTP::Response objects, notably $request->as_string, which is useful in debugging.

From each response, you can get the corresponding request and recreate the HTTP dialog. For
example:

$last = $response;
while ($response) {
 print $response->code(), " after ";
 # Or you could print even dump the whole
 # thing, with $response->as_string()

 $last = $response;
 $response = $response->previous();
}
print "the original request, which was:\n",
 $last->request->as_string;

200 after 401 after 301 after the original request, which was:
GET http://some.crazy.redirector.int/thing.html
User-Agent: libwww-perl/5.5394

3.6 LWP Classes: Behind the Scenes

To get data off the Web with LWP, you really only need to know about LWP::UserAgent objects and
HTTP::Response objects (although a rudimentary knowledge of the URI class and the LWP::Cookies
class can help too). But behind the scenes, there are dozens and dozens of classes that you generally
don't need to know about, but that are still busily doing their work. Most of them are documented in
the LWP manual pages, and you may see them mentioned in the documentation for the modules about
which you do need to know. For completeness, they are listed in Appendix A.

Chapter 4. URLs

Now that you've seen how LWP models HTTP requests and responses, let's study the facilities it
provides for working with URLs. A URL tells you how to get to something: "use HTTP with this host
and request this," "connect via FTP to this host and retrieve this file," or "send email to this address."

The great variety inherent in URLs is both a blessing and a curse. On one hand, you can stretch the
URL syntax to address almost any type of network resource. However, this very flexibility means
attempts to parse arbitrary URLs with regular expressions rapidly run into a quagmire of special cases.

The LWP suite of modules provides the URI class to manage URLs. This chapter describes how to
create objects that represent URLs, extract information from those objects, and convert between
absolute and relative URLs. This last task is particularly useful for link checkers and spiders, which
take partial URLs from HTML links and turn those into absolute URLs to request.

4.1 Parsing URLs

Rather than attempt to pull apart URLs with regular expressions, which is difficult to do in a way that
works with all the many types of URLs, you should use the URI class. When you create an object
representing a URL, it has attributes for each part of a URL (scheme, username, hostname, port, etc.).
Make method calls to get and set these attributes.

Example 4-1 creates a URI object representing a complex URL, then calls methods to discover the
various components of the URL.

Example 4-1. Decomposing a URL

use URI;
my $url = URI-
>new('http://user:pass@example.int:4345/hello.php?user=12');
print "Scheme: ", $url->scheme(), "\n";
print "Userinfo: ", $url->userinfo(), "\n";
print "Hostname: ", $url->host(), "\n";
print "Port: ", $url->port(), "\n";
print "Path: ", $url->path(), "\n";
print "Query: ", $url->query(), "\n";

Example 4-1 prints:

Scheme: http
Userinfo: user:pass
Hostname: example.int
Port: 4345
Path: /hello.php
Query: user=12

Besides reading the parts of a URL, methods such as host() can also alter the parts of a URL,
using the familiar convention that $object->method reads an attribute's value and $object-
>method(newvalue) alters an attribute:

use URI;
my $uri = URI->new("http://www.perl.com/I/like/pie.html");
$uri->host('testing.perl.com');
print $uri,"\n";
http://testing.perl.com/I/like/pie.html

Now let's look at the methods in more depth.

4.1.1 Constructors

An object of the URI class represents a URL. (Actually, a URI object can also represent a kind of
URL-like string called a URN, but you're unlikely to run into one of those any time soon.) To create a
URI object from a string containing a URL, use the new() constructor:

$url = URI->new(url [, scheme]);

If url is a relative URL (a fragment such as staff/alicia.html), scheme determines the
scheme you plan for this URL to have (http, ftp, etc.). But in most cases, you call URI->new
only when you know you won't have a relative URL; for relative URLs or URLs that just might be
relative, use the URI->new_abs method, discussed below.

The URI module strips out quotes, angle brackets, and whitespace from the new URL. So these
statements all create identical URI objects:

$url = URI->new('<http://www.oreilly.com/>');
$url = URI->new('"http://www.oreilly.com/"');
$url = URI->new(' http://www.oreilly.com/');
$url = URI->new('http://www.oreilly.com/ ');

The URI class automatically escapes any characters that the URL standard (RFC 2396) says can't
appear in a URL. So these two are equivalent:

$url = URI->new('http://www.oreilly.com/bad page');
$url = URI->new('http://www.oreilly.com/bad%20page');

If you already have a URI object, the clone() method will produce another URI object with
identical attributes:

$copy = $url->clone();

Example 4-2 clones a URI object and changes an attribute.

Example 4-2. Cloning a URI

use URI;

my $url = URI->new('http://www.oreilly.com/catalog/');
$dup = $url->clone();
$url->path('/weblogs');
print "Changed path: ", $url->path(), "\n";
print "Original path: ", $dup->path(), "\n";

When run, Example 4-2 prints:

Changed path: /weblogs
Original path: /catalog/

4.1.2 Output

Treat a URI object as a string and you'll get the URL:

$url = URI->new('http://www.example.int');
$url->path('/search.cgi');
print "The URL is now: $url\n";
The URL is now: http://www.example.int/search.cgi

You might find it useful to normalize the URL before printing it:

$url->canonical();

Exactly what this does depends on the specific type of URL, but it typically converts the hostname to
lowercase, removes the port if it's the default port (for example, http://www.eXample.int:80 becomes
http://www.example.int), makes escape sequences uppercase (e.g., %2e becomes %2E), and
unescapes characters that don't need to be escaped (e.g., %41 becomes A). In Chapter 12, we'll walk
through a program that harvests data but avoids harvesting the same URL more than once. It keeps
track of the URLs it's visited in a hash called %seen_url_before; if there's an entry for a given
URL, it's been harvested. The trick is to call canonical on all URLs before entering them into that
hash and before checking whether one exists in that hash. If not for calling canonical, you might
have visited http://www.example.int:80 in the past, and might be planning to visit
http://www.EXample.int, and you would see no duplication there. But when you call canonical on
both, they both become http://www.example.int, so you can tell you'd be harvesting the same URL
twice. If you think such duplication problems might arise in your programs, when in doubt, call
canonical right when you construct the URL, like so:

$url = URI->new('http://www.example.int')->canonical;

4.1.3 Comparison

To compare two URLs, use the eq() method:

if ($url_one->eq(url_two)) { ... }

For example:

use URI;
my $url_one = URI->new('http://www.example.int');
my $url_two = URI->new('http://www.example.int/search.cgi');
$url_one->path('/search.cgi');
if ($url_one->eq($url_two)) {
 print "The two URLs are equal.\n";
}
The two URLs are equal.

Two URLs are equal if they are represented by the same string when normalized. The eq() method
is faster than the eq string operator:

if ($url_one eq $url_two) { ... } # inefficient!

To see if two values refer not just to the same URL, but to the same URI object, use the == operator:

if ($url_one == $url_two) { ... }

For example:

use URI;
my $url = URI->new('http://www.example.int');
$that_one = $url;
if ($that_one == $url) {
 print "Same object.\n";
}
Same object.

4.1.4 Components of a URL

A generic URL looks like Figure 4-1.

Figure 4-1. Components of a URL

The URI class provides methods to access each component. Some components are available only on
some schemes (for example, mailto: URLs do not support the userinfo, server, or port
components).

In addition to the obvious scheme(), userinfo(), server(), port(), path(),
query(), and fragment() methods, there are some useful but less-intuitive ones.

$url->path_query([newval]);

The path and query components as a single string, e.g., /hello.php?user=21.

$url->path_segments([segment, ...]);

In scalar context, it is the same as path(), but in list context, it returns a list of path
segments (directories and maybe a filename). For example:

$url = URI->new('http://www.example.int/eye/sea/ewe.cgi');
@bits = $url->path_segments();
for ($i=0; $i < @bits; $i++) {
 print "$i {$bits[$i]}\n";
}
print "\n\n";
0 {}
1 {eye}
2 {sea}
3 {ewe.cgi}
$url->host_port([newval])

The hostname and port as one value, e.g., www.example.int:8080.

$url->default_port();

The default port for this scheme (e.g., 80 for http and 21 for ftp).

For a URL that simply lacks one of those parts, the method for that part generally returns undef:

use URI;
my $uri = URI->new("http://stuff.int/things.html");
my $query = $uri->query;
print defined($query) ? "Query: <$query>\n" : "No query\n";
No query

However, some kinds of URLs can't have certain components. For example, a mailto: URL
doesn't have a host component, so code that calls host() on a mailto: URL will die. For
example:

use URI;
my $uri = URI->new('mailto:hey-you@mail.int');
print $uri->host;
Can't locate object method "host" via package "URI::mailto"

This has real-world implications. Consider extracting all the URLs in a document and going through
them like this:

foreach my $url (@urls) {
 $url = URI->new($url);
 my $hostname = $url->host;
 next unless $Hosts_to_ignore{$hostname};
 ...otherwise ...
}

This will die on a mailto: URL, which doesn't have a host() method. You can avoid this by
using can() to see if you can call a given method:

foreach my $url (@urls) {
 $url = URI->new($url);
 next unless $uri->can('host');
 my $hostname = $url->host;
 ...

or a bit less directly:

foreach my $url (@urls) {
 $url = URI->new($url);
 unless('http' eq $uri->scheme) {
 print "Odd, $url is not an http url! Skipping.\n";
 next;
 }
 my $hostname = $url->host;
 ...and so forth...

Because all URIs offer a scheme method, and all http: URIs provide a host() method, this is
assuredly safe.[1] For the curious, what URI schemes allow for what is explained in the documentation
for the URI class, as well as the documentation for some specific subclasses like URI::ldap.

[1] Of the methods illustrated above, scheme, path, and fragment are the only
ones that are always provided. It would be surprising to find a fragment on a mailto:
URL—and who knows what it would mean—but it's syntactically possible. In practical
terms, this means even if you have a mailto: URL, you can call $url-
>fragment without it being an error.

4.1.5 Queries

The URI class has two methods for dealing with query data above and beyond the query() and
path_query() methods we've already discussed.

In the very early days of the web, queries were simply text strings. Spaces were encoded as plus (+)
characters:

http://www.example.int/search?i+like+pie

The query_keywords() method works with these types of queries, accepting and returning a
list of keywords:

@words = $url->query_keywords([keywords, ...]);

For example:

use URI;

my $url = URI-
>new('http://www.example.int/search?i+like+pie');
@words = $url->query_keywords();
print $words[-1], "\n";
pie

More modern queries accept a list of named values. A name and its value are separated by an equals
sign (=), and such pairs are separated from each other with ampersands (&):

http://www.example.int/search?food=pie&action=like

The query_form() method lets you treat each such query as a list of keys and values:

@params = $url->query_form([key,value,...);

For example:

use URI;
my $url = URI-
>new('http://www.example.int/search?food=pie&action=like');
@params = $url->query_form();
for ($i=0; $i < @params; $i++) {
 print "$i {$params[$i]}\n";
}
0 {food}
1 {pie}
2 {action}
3 {like}

4.2 Relative URLs

URL paths are either absolute or relative. An absolute URL starts with a scheme, then has whatever
data this scheme requires. For an HTTP URL, this means a hostname and a path:

http://phee.phye.phoe.fm/thingamajig/stuff.html

Any URL that doesn't start with a scheme is relative. To interpret a relative URL, you need a base
URL that is absolute (just as you don't know the GPS coordinates of "800 miles west of here" unless
you know the GPS coordinates of "here").

A relative URL leaves some information implicit, which you look to its base URL for. For example, if
your base URL is http://phee.phye.phoe.fm/thingamajig/stuff.html, and you see a relative URL of
/also.html, then the implicit information is "with the same scheme (http)" and "on the same host
(phee.phye.phoe.fm)," and the explicit information is "with the path /also.html." So this is equivalent
to an absolute URL of:

http://phee.phye.phoe.fm/also.html

Some kinds of relative URLs require information from the path of the base URL in a way that closely
mirrors relative filespecs in Unix filesystems, where ".." means "up one level", "." means "in this
level", and anything else means "in this directory". So a relative URL of just zing.xml interpreted
relative to http://phee.phye.phoe.fm/thingamajig/stuff.html yields this absolute URL:

http://phee.phye.phoe.fm/thingamajig/zing.xml

That is, we use all but the last bit of the absolute URL's path, then append the new component.

Similarly, a relative URL of ../hi_there.jpg interpreted against the absolute URL
http://phee.phye.phoe.fm/thingamajig/stuff.html gives us this URL:

http://phee.phye.phoe.fm/hi_there.jpg

In figuring this out, start with http://phee.phye.phoe.fm/thingamajig/ and the ".." tells us to go up
one level, giving us http://phee.phye.phoe.fm/. Append hi_there.jpg giving us the URL you see above.

There's a third kind of relative URL, which consists entirely of a fragment, such as #endnotes. This is
commonly met with in HTML documents, in code like so:

See the endnotes for the full citation

Interpreting a fragment-only relative URL involves taking the base URL, stripping off any fragment
that's already there, and adding the new one. So if the base URL is this:

http://phee.phye.phoe.fm/thingamajig/stuff.html

and the relative URL is #endnotes, then the new absolute URL is this:

http://phee.phye.phoe.fm/thingamajig/stuff.html#endnotes

We've looked at relative URLs from the perspective of starting with a relative URL and an absolute
base, and getting the equivalent absolute URL. But you can also look at it the other way: starting with
an absolute URL and asking "what is the relative URL that gets me there, relative to an absolute base
URL?". This is best explained by putting the URLs one on top of the other:

Base: http://phee.phye.phoe.fm/thingamajig/stuff.xml
Goal: http://phee.phye.phoe.fm/thingamajig/zing.html

To get from the base to the goal, the shortest relative URL is simply zing.xml. However, if the goal is
a directory higher:

Base: http://phee.phye.phoe.fm/thingamajig/stuff.xml
Goal: http://phee.phye.phoe.fm/hi_there.jpg

then a relative path is ../hi_there.jpg. And in this case, simply starting from the document root and
having a relative path of /hi_there.jpg would also get you there.

The logic behind parsing relative URLs and converting between them and absolute URLs is not
simple and is very easy to get wrong. The fact that the URI class provides functions for doing it all for

us is one of its greatest benefits. You are likely to have two kinds of dealings with relative URLs:
wanting to turn an absolute URL into a relative URL and wanting to turn a relative URL into an
absolute URL.

4.3 Converting Absolute URLs to Relative

A relative URL path assumes you're in a directory and the path elements are relative to that directory.
For example, if you're in /staff/, these are the same:

roster/search.cgi
/staff/roster/search.cgi

If you're in /students/, this is the path to /staff/roster/search.cgi:

../staff/roster/search.cgi

The URI class includes a method rel(), which creates a relative URL out of an absolute goal URI
object. The newly created relative URL is how you could get to that original URL, starting from the
absolute base URL.

$relative = $absolute_goal->rel(absolute_base);

The absolute_base is the URL path in which you're assumed to be; it can be a string, or a real
URI object. But $absolute_goal must be a URI object. The rel() method returns a URI
object.

For example:

use URI;
my $base = URI-
>new('http://phee.phye.phoe.fm/thingamajig/zing.xml');
my $goal = URI->new('http://phee.phye.phoe.fm/hi_there.jpg');
print $goal->rel($base), "\n";
../hi_there.jpg

If you start with normal strings, simplify this to URI->new($abs_goal)->rel($base), as
shown here:

use URI;
my $base = 'http://phee.phye.phoe.fm/thingamajig/zing.xml';
my $goal = 'http://phee.phye.phoe.fm/hi_there.jpg';
print URI->new($goal)->rel($base), "\n";
../hi_there.jpg

Incidentally, the trailing slash in a base URL can be very important. Consider:

use URI;
my $base = 'http://phee.phye.phoe.fm/englishmen/blood';
my $goal = 'http://phee.phye.phoe.fm/englishmen/tony.jpg';

print URI->new($goal)->rel($base), "\n";
tony.jpg

But add a slash to the base URL and see the change:

use URI;
my $base = 'http://phee.phye.phoe.fm/englishmen/blood/';
my $goal = 'http://phee.phye.phoe.fm/englishmen/tony.jpg';
print URI->new($goal)->rel($base), "\n";
../tony.jpg

That's because in the first case, "blood" is not considered a directory, whereas in the second case, it is.
You may be accustomed to treating /blood and /blood/ as the same, when blood is a directory. Web
servers maintain your illusion by invisibly redirecting requests for /blood to /blood/, but you can't ever
tell when this is actually going to happen just by looking at a URL.

4.4 Converting Relative URLs to Absolute

By far the most common task involving URLs is converting relative URLs to absolute ones. The
new_abs() method does all the hard work:

$abs_url = URI->new_abs(relative, base);

If rel_url is actually an absolute URL, base_url is ignored. This lets you pass all URLs from
a document through new_abs(), rather than trying to work out which are relative and which are
absolute. So if you process the HTML at http://www.oreilly.com/catalog/ and you find a link to
pperl3/toc.html, you can get the full URL like this:

$abs_url = URI->new_abs('pperl3/toc.html',
'http://www.oreilly.com/catalog/');

Another example:

use URI;
my $base_url = "http://w3.thing.int/stuff/diary.html";
my $rel_url = "../minesweeper_hints/";
my $abs_url = URI->new_abs($rel_url, $base_url);
print $abs_url, "\n";
http://w3.thing.int/minesweeper_hints/

You can even pass the output of new_abs to the canonical method that we discussed earlier, to
get the normalized absolute representation of a URL. So if you're parsing possibly relative, oddly
escaped URLs in a document (each in $href, such as you'd get from an tag),
the expression to remember is this:

$new_abs = URI->new_abs($href, $abs_base)->canonical;

You'll see this expression come up often in the rest of the book

Chapter 5. Forms

Much of the interesting data of the Web is accessible only through HTML forms. This chapter shows
you how to write programs to submit form data and get the resulting page. In covering this
unavoidably complex topic, we consider packing form data into GET and POST requests, how each
type of HTML form element produces form data, and how to automate the process of submitting form
data and processing the responses.

The basic model for the Web is that the typical item is a "document" with a known URL, and when
you want to access it (whether it's the Rhoda episode guide, or the front page of today's Boston
Globe), you just get it, no questions asked. Even when there are cookies or HTTP authentication
involved, these are basically just addenda to the process of requesting the known URL from the
appropriate server. But some web resources require parameters beyond just their URL, parameters that
are generally fed in by the user through HTML forms, and that the browser then sends either as
dynamic parts of a URL (in the case of a GET request) or as content of a POST request.

A program on the receiving end of form data may simply use it as a query for searching other data,
such as scanning all the RFCs and listing the ones by specific authors. Or a program may store the
data, as with taking the user's data and saving it as a new post to a message base. Or a program may do
grander things with the user-provided data, such as debiting the credit card number provided, logging
the products being ordered, and putting them on the roster of items to be sent out. The details of
writing those kinds of programs are covered in uncountable books on CGI, mod_perl, ASP, and the
like. You are probably familiar with writing server-side programs in at least one of these frameworks,
probably through having written CGIs in Perl, maybe with the huge and hugely popular Perl library,
CGI.pm.

But what we are interested in here is the process of data getting from HTML forms into those server-
side programs. Once you understand that process, you can write LWP programs that simulate that
process, by providing the same kind of data as a real live user would provide keying data into a real
live browser.

5.1 Elements of an HTML Form

A good example of a straightforward form is the U.S. Census Bureau's Gazetteer (geographical index)
system. The search form, at http://www.census.gov/cgi-bin/gazetteer, consists of:

<form method=get action=/cgi-bin/gazetteer>
<hr noshade>
<h3>
Search for a Place
in the
US
</h3>
<p>
Name: <input name="city" size=15>
State (optional): <input name="state" size=3>

or a 5-digit zip code: <input name="zip" size=8>
<p>
<input type="submit" value="Search">
</form>

We've highlighted the interesting bits. The method attribute of the <form> tag says whether to use
GET or POST to submit the form data. The action attribute gives the URL to receive the form data.
The components of a form are text fields, drop-down lists, checkboxes, and so on, each identified by a
name. Here the <input> tags define text fields with the names city and state, and a submit
button called zip. The browser submits the state of the form components (what's been typed into the
text boxes, which checkboxes are checked, which submit button you pressed) as a set of
name=value pairs. If you typed "Dulce" into the city field, part of the browser's request for /cgi-
bin/gazetteer would be city=Dulce.

Which part of the request contains the submitted name=value pairs depends on whether it's a GET
or POST request. GET requests encode the pairs in the URL being requested, each pair separated by
an ampersand (&) character, while POST requests encode them in the body of the request, one pair
per line. In both cases the names and values are URL encoded.

5.2 LWP and GET Requests

The way you submit form data with LWP depends on whether the form's action is GET or POST. If
it's a GET form, you construct a URL with encoded form data (possibly using the $url-
>query_form() method) and call $browser->get(). If it's a POST form, you call to
call $browser->post() and pass a reference to an array of form parameters. We cover POST
later in this chapter.

5.2.1 GETting Fixed URLs

If you know everything about the GET form ahead of time, and you know everything about what
you'd be typing (as if you're always searching on the name "Dulce"), you know the URL! Because the
same data from the same GET form always makes for the same URL, you can just hardcode that:

$resp = $browser->get(
 'http://www.census.gov/cgi-
bin/gazetteer?city=Dulce&state=&zip='
);

And if there is a great big URL in which only one thing ever changes, you could just drop in the value,
after URL-encoding it:

use URI::Escape ('uri_escape');
$resp = $browser->get(
 'http://www.census.gov/cgi-bin/gazetteer?city=' .
 uri_escape($city) .
 '&state=&zip='
);

Note that you should not simply interpolate a raw unencoded value, like this:

$resp = $browser->get(
 'http://www.census.gov/cgi-bin/gazetteer?city=' .
 $city . # wrong!
 '&state=&zip='

);

The problem with doing it that way is that you have no real assurance that $city's value doesn't
need URL encoding. You may "know" that no unencoded town name ever needs escaping, but it's
better to escape it anyway.

If you're piecing together the parts of URLs and you find yourself calling uri_escape more than
once per URL, then you should use the next method, query_form, which is simpler for URLs with
lots of variable data.

5.2.2 GETting a query_form() URL

The tidiest way to submit GET form data is to make a new URI object, then add in the form pairs
using the query_form method, before performing a $browser->get($url) request:

$url->query_form(name => value, name => value, ...);

For example:

use URI;
my $url = URI->new('http://www.census.gov/cgi-bin/gazetteer'
);
my($city,$state,$zip) = ("Some City","Some State","Some Zip");
$url->query_form(
 # All form pairs:
 'city' => $city,
 'state' => $state,
 'zip' => $zip,
);

print $url, "\n"; # so we can see it

Prints:

http://www.census.gov/cgi-
bin/gazetteer?city=Some+City&state=Some+State&zip=Some+Zip

From this, it's easy to write a small program (shown in Example 5-1) to perform a request on this URL
and use some simple regexps to extract the data from the HTML.

Example 5-1. gazetteer.pl

#!/usr/bin/perl -w
gazetteer.pl - query the US Cenus Gazetteer database

use strict;
use URI;
use LWP::UserAgent;

die "Usage: $0 \"That Town\"\n" unless @ARGV == 1;
my $name = $ARGV[0];
my $url = URI->new('http://www.census.gov/cgi-bin/gazetteer');
$url->query_form('city' => $name, 'state' => '', 'zip' =>
'');
print $url, "\n";

my $response = LWP::UserAgent->new->get($url);
die "Error: ", $response->status_line unless $response-
>is_success;
extract_and_sort($response->content);

sub extract_and_sort { # A simple data extractor routine
 die "No ... in content" unless $_[0] =~
m{(.*?)}s;
 my @pop_and_town;
 foreach my $entry (split //, $1) {
 next unless $entry =~
m{^(.*?)(.*?)
}s;
 my $town = "$1 $2";
 next unless $entry =~ m{^Population \(.*?\): (\d+)
}m;
 push @pop_and_town, sprintf "%10s %s\n", $1, $town;
 }
 print reverse sort @pop_and_town;
}

Then run it from a prompt:

% perl gazetteer.pl Dulce
http://www.census.gov/cgi-bin/gazetteer?city=Dulce&state=&zip=
 2438 Dulce, NM (cdp)
 794 Agua Dulce, TX (city)
 136 Guayabo Dulce Barrio, PR (county subdivision)

% perl gazetteer.pl IEG
http://www.census.gov/cgi-bin/gazetteer?city=IEG&state=&zip=
 2498016 San Diego County, CA (county)
 1886748 San Diego Division, CA (county subdivision)
 1110549 San Diego, CA (city)
 67229 Boca Ciega Division, FL (county subdivision)
 6977 Rancho San Diego, CA (cdp)
 6874 San Diego Country Estates, CA (cdp)
 5018 San Diego Division, TX (county subdivision)
 4983 San Diego, TX (city)
 1110 Diego Herna]Ndez Barrio, PR (county subdivision)
 912 Riegelsville, PA (county subdivision)
 912 Riegelsville, PA (borough)
 298 New Riegel, OH (village)

5.3 Automating Form Analysis

Rather than searching through HTML hoping that you've found all the form components, you can
automate the task. Example 5-2 contains a program, formpairs.pl, that extracts the names and values
from GET or POST requests.

Example 5-2. formpairs.pl

#!/usr/local/bin/perl -w
formpairs.pl - extract names and values from HTTP requests

use strict;
my $data;
if(! $ENV{'REQUEST_METHOD'}) { # not run as a CGI
 die "Usage: $0 \"url\"\n" unless $ARGV[0];
 $data = $ARGV[0];
 $data = $1 if $data =~ s/^\w+\:.*?\?(.+)//;
 print "Data from that URL:\n(\n";
} elsif($ENV{'REQUEST_METHOD'} eq 'POST') {
 read(STDIN, $data, $ENV{'CONTENT_LENGTH'});
 print "Content-type: text/plain\n\nPOST data:\n(\n";
} else {
 $data = $ENV{'QUERY_STRING'};
 print "Content-type: text/plain\n\nGET data:\n(\n";
}
for (split '&', $data, -1) { # Assumes proper URLencoded
input
 tr/+/ /; s/"/\\"/g; s/=/\" => \"/; s/%20/ /g;
 s/%/\\x/g; # so %0d => \x0d
 print " \"$_\",\n";
}
print ")\n";

That program, when run as a command-line utility, takes a URL as its one argument, decodes the
encoded GET query, and prints it in more Perlish terms:

% perl formpairs.pl "http://www.census.gov/cgi-
bin/gazetteer?city=IEG
&state=&zip="
Data from that URL:
(
 "city" => "IEG",
 "state" => "",
 "zip" => "",
)

Using a more complex URL (wrapped here for readability) illustrates the benefit of it:

% perl -w formpairs.pl
http://www.altavista.com/sites/search/web?q=
pie+AND+rhubarb+AND+strawberry%0D%0AAND+NOT+crumb&kl=en&r=&dt=
tmperiod
&d2=0&d0=&d1=&sc=on&nbq=30&pg=aq&search=Search
Data from that URL:
(
 "q" => "pie AND rhubarb AND strawberry\x0D\x0AAND NOT
crumb",
 "kl" => "en",
 "r" => "",
 "dt" => "tmperiod",
 "d2" => "0",
 "d0" => "",
 "d1" => "",
 "sc" => "on",
 "nbq" => "30",
 "pg" => "aq",
 "search" => "Search",
)

The same program also functions as a CGI, so if you want to see what data a given form ends up
submitting, you can simply change the form element's action attribute to a URL where you've set
up that program as a CGI. As a CGI, it accepts both GET and POST methods.

For example:

<form method="post" action="http://myhost.int/cgi-
bin/formpairs.pl">
Kind of pie: <input name="what pie" size=15>
<input type="submit" value="Mmm pie">
</form>

When you fill the one blank out with "tasty pie!" and press the "Mmm pie" button, the CGI will print:

POST data:
(
 "what pie" => "tasty pie\x21",
)

A more ad hoc solution that doesn't involve bothering with a CGI is to take the local copy of the form,
set the form tag's method attribute to get, set its action attribute to dummy.txt, and create a
file dummy.txt consisting of the text "Look at my URL!" or the like. Then, when you submit the form,
you will see only the "Look at my URL!" page, but the browser's "Location"/"Address"/"URL"
window will show a URL like this:

file:///C%7C/form_work/dummy.txt?what+pie=tasty+pie%21

You can then copy that URL into a shell window as the argument to formpairs.pl:

% perl formpairs.pl
"file:///C%7C/form_work/dummy.txt?what+pie=tasty+pie%21"
Data from that URL:
(
 "what pie" => "tasty pie\x21",
)

5.4 Idiosyncrasies of HTML Forms

This section explains how the various form fields (hidden data, text boxes, etc.) are turned into data
that is sent to the server. For information on the cosmetic features, such as the attributes that control
how big the form object appears on the screen, see Web Design in a Nutshell (O'Reilly), HTML &
XHTML: The Definitive Guide (O'Reilly), or the W3C's explanation of HTML 4.01 forms at
http://www.w3.org/TR/html401/interact/forms.

5.4.1 Hidden Elements

An input element with type=hidden creates a form pair consisting of the value of its name
attribute and the value of its value attribute. For example, this element:

<input type=hidden name="pie" value="meringue">

This doesn't display anything to the user, but when submitted, creates a form pair pie=meringue.

5.4.2 Text Elements

An input element with type=text (or with no type attribute at all) creates a one-line form box in
which the user can type whatever she wants to send on this form. If there's a value attribute, its
value is what's filled in when the form is first rendered, or when the user hits a Reset form button.

For example, this element:

<input type=text name="pie_filling" value="cherry">

creates a form box with "cherry" filled in. If the user submits the form as is, this will make a form pair
pie_filling=cherry. If the user changes this to crème brÛlée, this will make a form
pair pie_filling=crème brÛlée, or, after it gets URL encoded,
pie_filling=cr%E8me+br%FBl%E9e.

5.4.3 Password Elements

An input element with type=password works exactly as if it had type=text, except the
characters on screen in that box are made unreadable to anyone who might be looking over the user's
shoulder. This is typically done by showing every character of the current value as *. For example:

<input type=password name="pie_filling" value="cherry">

This will have the initial value cherry, except it will appear as ******. If the user enters crème
brÛlée, that will be the current value, but it will display as ************. The form pairs
submitted are just as if it were type=text, that is, pie_filling=cherry or
pie_filling=crème brÛlée.

5.4.4 Checkboxes

An input element with type=checkbox creates an on/off form button. The user cannot change the
value of the element beyond just turning it on or off. For example:

<input type=checkbox name="à la mode" value="Pretty please!">

If the user checks this box and submits the form, it will send the form pair consisting of the element's
name and value attribute's values. In this case, the pair is à la mode=Pretty please!, or,
after it gets URL encoded, %E0+la+mode=Pretty+please%21. Note that if there is no
value attribute, you get the pair name=on, as if there were a value="on" in this element.
Incidentally, the user doesn't typically see whatever is specified for the value attribute.

Note that this differs from type=text input elements in this way: in type=text input
elements, the value attribute sets the default value of the form, but in type=checkbox
elements, the value attribute controls what value is sent if the checkbox is turned on when the form
is submitted. By default, a checkbox is off upon rendering a new form (or when the user hits Reset); to
make a checkbox element on by default, add the checked attribute:

<input type=checkbox name="à la mode" ivalue="Pretty please!"
checked>

5.4.5 Radio Buttons

Input elements with type=radio behave like checkboxes, except that turning one radio button
element on will turn off any other radio button elements with the same name value in that form. As
the name "radio button" suggests, this is meant to be like the station preset buttons on many models of
old car radios, where pressing in one button would make any selected one pop out.

Moreover, there is typically no way to turn off a radio button except by selecting another in the same
group. An example group of radio buttons:

<input type=radio name="à la mode" value="nope" checked>
 nope

<input type=radio name="à la mode" value="w/lemon" >
 with lemon sorbet

<input type=radio name="à la mode" value="w/vanilla" >
 with vanilla ice cream

<input type=radio name="à la mode" value="w/chocolate" >
 with chocolate ice cream

By default, the nope element is on. If the user submits this form unchanged, this will send the form
pair à la mode=nope. Selecting the second option ("with lemon sorbet") also deselects the first

one (or whatever other "à la mode" element is selected), and if the user submits this, it well send the
form pair à la mode=w/lemon.

Note that the checked attribute can be used to turn a type=radio element on by default, just as
with type=checkbox elements. Different browsers behave differently when a radio button group
has no checked element in it, or more than one. If you need to emulate the behavior of a particular
browser in that case, experiment with the formpairs.pl program explained earlier, to see what form
pair(s) are sent.

5.4.6 Submit Buttons

An input element with type=submit produces a button that, when pressed, submits the form data.
There are two types of submit buttons: with or without a name attribute.

<input type=submit value="Go!">

The name-less element forms a button on screen that says "Go!". When pressed, that button submits
the form data.

<input type=submit value="Go!" name="verb">

This displays the same as the name-less element, but when pressed, it also creates a form pair in the
form it submits, consisting of verb=Go! (or after URL encoding, verb=Go%21). Note that the
value attribute is doing double duty here, supplying both the value to be submitted as well as what
should be displayed on the face of the button.

The purpose of this sort of button is to distinguish which of several submit buttons is pressed.
Consider a form that contains these three submit buttons:

<input type=submit name="what_to_do" value="Continue
Shopping">
<input type=submit name="what_to_do" value="Check Out">
<input type=submit name="what_to_do" value="Erase Order">

All of these will submit the form, but only if the first one is pressed will there be a
what_to_do=Continue Shopping pair in the form data; only if the second one is pressed
will there be a what_to_do=Check Out pair in the form data; and only if the third one is
pressed will there be a what_to_do=Erase Order pair in the form data.

Note, incidentally, that in some cases, it is possible to submit a form without pressing a submit button!
This is not specified in the HTML standard, but many browsers have the feature that if a form contains
only one type=text field, if the user hits Enter while the cursor is in that field, the form is
submitted. For example, consider this form:

<form type=get action="searcher.cgi">
 <input type=hidden name="session" value="3.14159">
 <input type=text name="key" value="">
 <input type=submit name="verb" value="Search!">
</form>

If the user types "meringue" in the input box, then hits the "Search!" button with the mouse pointer,
there will be three form pairs submitted: session=3.14159, key=meringue, and
verb=Search!. But if the user merely types "meringue" in the input box and hits the Enter key,
there will be only two form pairs submitted: session=3.14159 and key=meringue. No
form pair for the submit button is sent then, because it wasn't actually pressed.

5.4.7 Image Buttons

An input element with type=image is somewhat like a type=submit element, except instead
of producing a button that the user presses in order to submit the form, it produces an inline image that
the user clicks on to submit the form.

Also, whereas a type=submit button generates one form pair when pressed, name=value,
from the element's name and value attributes, a type=image element generates two form pairs
when pressed: name.x=across and name.y=down, reflecting the point in the image where the
user's pointer was when he clicked on it. An example of typical type=image element syntax will
illustrate this:

<input type=image name="woohah" src="do_it.gif">

And suppose that do_it.gif is an image 100 pixels wide by 40 high, and looks like the image in Figure
5-1.

Figure 5-1. A sample submit button

If the user clicks the pointer over the absolute top-leftmost pixel of that image as drawn by the above
<input type=image ...> element inside a larger form element, it will submit the form along
with two form pairs: woohah.x=0 and woohah.y=0. If the user instead clicks the pointer over
the four-corners design in the middle of the "O" in "DO IT!", this happens to be 38 pixels from the left
edge of the image, and 19 pixels from the top edge of the image, the form is submitted with the two
form pairs woohah.x=38 and woohah.y=19.

While this imagemap-like feature of input type=image elements would obviously be quite useful
for, say, click-to-zoom maps, most uses of input type=image elements are actually merely
cosmetic, and the inlined image is just a fancy-looking version of the submit button. As such, the
programs that process most such forms will just ignore the values of the name.x and name.y form
pairs.

Consider this simple form:

<form type=post action="searcher.cgi">
 <input type=hidden name="session" value="3.14159">
 <input type=text name="key" value="">
 <input type=image name="in-english" src="usa_flag.png">
 <input type=image name="in-spanish" src="mex_flag.png">
</form>

This will render an input box followed by a U.S. flag image, then a Mexican flag image. There are
three possible ways this can be submitted. First, if the user selects the input box to plant the cursor
there, types "chocolate", and presses Enter, this will submit the form (via a POST method) to the form
searcher.cgi with just two form pairs: session=3.14159 and key=chocolate.

Secondly, if the user types "chocolate", then puts the pointer over the U.S. flag and clicks it, it will
submit the form with four form pairs: session=3.14159, key=chocolate, in-
english.x=12, and in-english.y=34, where 12 and 34 are the across and down
coordinates of the point in the U.S. flag where the user clicked.

Or thirdly, if the user types "chocolate", then puts the pointer over the Mexican flag and clicks it, it
will submit the form with four form pairs: session=3.14159, key=chocolate, in-
spanish.x=12, and in-spanish.y=34, where 12 and 34 are the across and down
coordinates of the point in the Mexican flag where the user clicked.

Incidentally, the HTML specifications do not say how browsers should behave when there is no
name=whatever attribute present in an input type=image element, but common practice is to
create form pairs with keys named x and y (i.e., x=38 and y=19).

5.4.8 Reset Buttons

A type=reset input element produces no form pair and does not submit the form. It merely
creates a button that the user can press to reset the form's contents to their default values, back to the
way they were when the form was first rendered. The value attribute is used only to put text on the
button's face. For example:

<input type=reset value="Nevermind">

This creates a reset button with the text "Nevermind" on it. It has no other effect.

5.4.9 File Selection Elements

A type=file input element provides some set of controls with which the user can select a local
file. Usually this appears as a "Browse..." button that brings up an "Open File..." window and a text
box that lists the name of whatever file is selected. When a file is selected, it sets the value of the form
pair as the content of the file. File parameters, however, work in quite a different way from regular
forms, and we deal with them in the Section 5.7 section later in this chapter.

5.4.10 Textarea Elements

A textarea element is like an <input type=text ...> element, except the user can enter
many lines of text instead of just one. Moreover, the syntax is different. Whereas an <input
type=text ...> element consists of just one tag, with the default content in the value
attribute, like so:

<input type=text name="pairname" value="default content">

a textarea element consists of a start-tag, default content, and an end-tag:

<textarea name="pairname">Default content, first line.
Another line.
The last line.</textarea>

5.4.11 Select Elements and Option Elements

One final construct for expressing form controls is a select element containing some number of
option elements. This is usually rendered as a drop-down/pop-up menu or occasionally as a
scrollable list. In either case, the behavior is the same: the user selects an option from the list. The
syntax is:

<select name="à la mode">
 <option value="nope">Nope</option>
 <option value="w/lemon">with lemon sorbet</option>
 <option value="w/vanilla">with vanilla ice cream</option>
 <option value="w/chocolate">with chocolate ice
cream</option>
</select>

That is, one select element with a name=string attribute contains some option elements,
each of which has a value=string attribute. The select element generates one form pair,
using the select element's name=string attribute and the value=string attribute from the
chosen option element. So in the example above, if the user chooses the option that showed on the
screen as "with lemon sorbet", this sends the form pair à la mode=w/lemon, or, once it's URL
encoded, %E0+la+mode=w%2Flemon.

Any option elements that have no value=string attribute get their values from the content of
the element. So these option elements:

<option>This & That</option>
<option>And the other

mean the same thing as:

<option value="This & That">This & That</option>
<option value="And the other">And the other</option>

When the form is first rendered, the first element is typically selected by default, and selecting any
other deselects it. By providing a selected attribute in an option element, you can force it to be the
selected one when the form first renders, just as the checked attribute does for checkbox input
elements. Also, the </option> end-tag is optional.

Putting all that together, this code:

<select name="pie_filling">
 <option>Apple crunch
 <option selected>Pumpkin
 <option value="Mince-meat">Mince

 <option>Blueberry
 <option>Quince
</select>

means the same thing as this code:

<select name="pie_filling">
 <option value="Apple crunch">Apple crunch</option>
 <option value="Pumpkin">Pumpkin</option>
 <option value="Mince-meat">Mince</option>
 <option value="Blueberry" selected>Blueberry</option>
 <option value="Quince">Quince</option>
</select>

with the single exception that when the first one is rendered on the screen, it starts out with "Pumpkin"
selected by default, whereas in the second one, "Blueberry" is selected by default.

There are two other kinds of differences in the code: the latter has </option> tags, but the former
does not, and the former leaves out some value="..." attributes where the latter always has
them. However, neither of these two kinds of differences are significant; the browser sees both blocks
of code as meaning the same thing.

If the select element has a multiple attribute, as here:

<select name="à la mode" multiple>
 <option value="nope">Nope</option>
 <option value="w/lemon">with lemon sorbet</option>
 <option value="w/vanilla">with vanilla ice cream</option>
 <option value="w/chocolate">with chocolate ice
cream</option>
</select>

the user is allowed to select more than one option at a time. (And incidentally, this typically forces the
options to appear as a scrollable list instead of as a drop-down/pop-up menu.) This multiple
feature is rarely used in practice

5.5 POST Example: License Plates

Second only to the issues surrounding tattooing and tattoo removal, the hardest decision one ever has
to make is, upon moving to California and buying a convertible, what personalized license plate
should one get? In the past, this was a slow and embarrassing process, requiring one to go to the
Motor Vehicles office, shuffle up to the clerk, and meekly request "HOTBABE," only to receive the
crushing news that someone else has, somehow, already thought of that and taken it as her own
personalized license plate. While there are 66,220,518,000 possible combinations,[1] it is apparently a
devoted pursuit of the state's 30-odd million residents to think of personalized license plates. As with
Internet domain names, if you can think of it, someone probably already has it.

[1] This is based on the formula: $c += 35 ** $_ - 10 ** $_ for 2 .. 7;
print $c;. (The 35 is because letter O is treated as digit zero. The 10 is because all-
digit plates are not allowed.)

But now the California Department of Motor Vehicles has understood our plight, and has put up the
web site plates.ca.gov so that we can sit at home and use the Web to see which of our license plate
ideas is available. It has a simple HTML form interface, shown in Figure 5-2.

Figure 5-2. California License Plate Search

However, it's so draining to have to plant the mouse in the search box, type "PL8DV8" or whatever
other license plate you want, mouse over to the submit button and press it, see the next screen report
either "Plate configuration PL8DV8 is unavailable" or "this plate is tentatively acceptable and
available," then mouse over to the Back button, press it, and so on for every possibility that occurs to
us. Just as a true power user would never use the web interface to whois but would instead insist on
the command-line tool, we too would be happiest with a command-line interface to this license plate
search form.

5.5.1 The Form

Viewing the source of the search form at http://plates.ca.gov/search/ shows that, omitting some table-
formatting codes, it really just consists of:

<form method=POST action="search.php3">
<input type=text size=7 name=plate maxlength=7>

2. Choose a search option.

<input type=submit value="Check Plate Availability"
name="search">

Use this method to see if your exact configuration is
available.

<input type=submit value="See Existing Similar Plates"
name="search">
...
Enter 2 to 7 letters or letters and numbers (number only
plates are no
longer offered)
...
</form>

From what we learned earlier about how different kinds of form elements produce different kinds of
pairs, we can deduce that filling "PL8DV8" in the type=text box, then pressing the "Check Plate
Availability" button will cause two form pairs to be submitted: plate=PL8DV8 and
search=Check Plate Availability.

In each case, the first part of the form pair comes from the element's name attribute. With the first
pair, we follow the rule for text input elements, and get the value from whatever the user has typed
into that box (or whatever is there by default). With either submit button, we follow the rule for
type=submit elements and make a form pair from the value attribute (if there is such an
attribute and if this is the button that the user is pressing in order to submit the form).

5.5.2 Use formpairs.pl

We can save a local copy of the form's HTML source and edit the form element's action attribute
to point to some server where we've set up as a CGI the formpairs.pl program from earlier in this
chapter. The form element will then read:

<form method=POST action="http://someserver.int/cgi-
bin/formpairs.pl">

If we then open the local copy of the form in our browser, fill in "PL8DV8" in the search box, and hit
the first Submit button, formpairs.pl will report:

POST data:
(
 "plate" => "PL8DV8",
 "search" => "Check Plate Availability",
)

Our idea of what form pairs get sent was correct! (The second button would predictably send a
"search" value of "See Existing Similar Plates", but that function is outside the
scope of our interest.)

5.5.3 Translating This into LWP

Simply put that list of form pairs into a call to $browser->post(url, pairs_arrayref).
Specifically, the call will look like this:

my $response = $browser->post(

 'http://plates.ca.gov/search/search.php3',
 [
 'plate' => $plate,
 'search' => 'Check Plate Availability'
],
);

Knowing this, it's simple to write code that takes an argument from the command line and puts it into
$plate, performs the above POST request, then checks the response. Example 5-3 is the complete
program.

Example 5-3. pl8.pl

#!/usr/bin/perl -w
pl8.pl - query California license plate database

use strict;
use LWP::UserAgent;
my $plate = $ARGV[0] || die "Plate to search for?\n";
$plate = uc $plate;
$plate =~ tr/O/0/; # we use zero for letter-oh
die "$plate is invalid.\n"
 unless $plate =~ m/^[A-Z0-9]{2,7}$/
 and $plate !~ m/^\d+$/; # no all-digit plates

my $browser = LWP::UserAgent->new;
my $response = $browser->post(
 'http://plates.ca.gov/search/search.php3',
 [
 'plate' => $plate,
 'search' => 'Check Plate Availability'
],
);
die "Error: ", $response->status_line
 unless $response->is_success;

if($response->content =~ m/is unavailable/) {
 print "$plate is already taken.\n";
} elsif($response->content =~ m/and available/) {
 print "$plate is AVAILABLE!\n";
} else {
 print "$plate... Can't make sense of response?!\n";
}
exit;

Saved into pl8.pl, it runs happily from the command line:

% perl pl8.pl
Plate to search for?

% perl pl8.pl 314159
314159 is invalid.
% perl pl8.pl pl8dv8
PL8DV8 is AVAILABLE!
% perl pl8.pl elbarto
ELBART0 is already taken.
% perl pl8.pl ilikepie
ILIKEPIE is invalid.
% perl pl8.pl pieman
PIEMAN is already taken.
% perl pl8.pl pielady
PIELADY is already taken.
% perl pl8.pl pieboy
PIEB0Y is AVAILABLE!
% perl pl8.pl piegirl
PIEGIRL is AVAILABLE!
% perl pl8.pl shazbot
SHAZB0T is already taken.
% perl pl8.pl lwpbot
LWPB0T is AVAILABLE!

5.6 POST Example: ABEBooks.com

ABEBooks.com is a web site that allows users to search the database of the books for sale at hundreds
of used bookstores mostly in the U.S. and Canada. An eagle-eyed user can find anything from a $2
used copy of Swahili for Travellers, to an 11,000 complete set of the 1777 edition of Diderot's
Encyclopédie. The trick, as with any kind of bargain hunting, is to always keep looking, because one
never knows when something new and interesting will arrive. The manual way of doing this is to
fastidiously keep a list of titles, authors, and subjects for which you're keeping an eye out, and to
routinely visit the ABEBooks site, key in each of your searches into the HTML search form, and look
for anything new. However, this is precisely the kind of drudgery that computers were meant to do for
us; so we'll now consider how to automate that task.

As with the license plate form in the previous section, the first step in automating form submission is
to understand the form in question. ABEBooks's "Advanced Search" system consists of one form,
which is shown in Figure 5-3.

Figure 5-3. ABEBooks query form

The process of searching with this form is just a matter of filling in the applicable fields and hitting
"Start Search"; the web site then returns a web page listing the results. For example, entering "Codex
Seraphinianus" in the "Title" field returns the web page shown in Figure 5-4.

Figure 5-4. ABEBooks results page

5.6.1 The Form

In the previous section, the form's source was simple enough that we could tell at a glance what form
pairs it would produce, and our use of formpairs.pl merely confirmed that we understood it. However,
this ABEBooks form is obviously much more complex, so let's start with using formpairs.pl and look
to the details of the form source only as necessary. Save a local copy of the form and change its form
action attribute from this:

<FORM ACTION="BookSearch" METHOD=post>

to this:

<FORM ACTION="http://someserver.int/cgi-bin/formpairs.pl"
METHOD=post>

or to whatever URL you've put a copy of formpairs.pl at. If you then open that newly altered HTML
file in a browser, fill in "Codex Seraphinianus" in the "Title" blank, set "Order results by" to
"Newest," set "Results per page" to "100," and hit "Start Search," our formpairs.pl program shows the
form pairs that the browser sends:

POST data:
(
 "ph" => "2",
 "an" => "",
 "tn" => "Codex Seraphinianus",
 "pn" => "",
 "sn" => "",
 "gpnm" => "ALL",
 "cty" => "",
 "bi" => "",
 "prl" => "",
 "prh" => "",
 "sortby" => "0",
 "ds" => "30",
 "bu" => "Start Search",
)

5.6.2 Translating This into LWP

These form pairs can be pasted into a simple program for saving the result of that search, using a call
to $browser->post(url, pairs_arrayref) such as you'll recognize from the previous
section. Example 5-4 demonstrates.

Example 5-4. seraph.pl

#!/usr/bin/perl -w
seraph.pl - search for Codex Seraphinianus on abebooks

use strict;

my $out_file = "result_seraph.html"; # where to save it

use LWP;
my $browser = LWP::UserAgent->new;
my $response = $browser->post(
 'http://dogbert.abebooks.com/abe/BookSearch',
 # That's the URL that the real form submits to.
 [
 "ph" => "2",
 "an" => "",
 "tn" => "Codex Seraphinianus",
 "pn" => "",
 "sn" => "",
 "gpnm" => "All Book Stores",
 "cty" => "All Countries",
 "bi" => "Any Binding",
 "prl" => "",
 "prh" => "",
 "sortby" => "0",
 "ds" => "100",
 "bu" => "Start Search",
]
);

die "Error: ", $response->status_line, "\n"
 unless $response->is_success;

open(OUT, ">$out_file") || die "Can't write-open $out_file:
$!";
binmode(OUT);
print OUT $response->content;
close(OUT);
print "Bytes saved: ", -s $out_file, " in $out_file\n";

When run, this program successfully saves to result_seraph.html all the HTML that results from
running a 100-newest-items search on the title "Codex Seraphinianus".

5.6.3 Adding Features

A little more experimentation with the form would show that a search on an author's name, instead of
the title name, shows up in the an=author_name form pair, instead of the tn=title_name
form pair. That is what we see if we go sifting through the HTML source to the search form:

...
<TR><TH ALIGN=LEFT>Author</TH>
<TD><INPUT TYPE=text NAME=an VALUE="" SIZE=35
MAXLENGTH=254></TD></TR>
<TR><TH ALIGN=LEFT>Title</TH>

<TD><INPUT TYPE=text NAME=tn VALUE="" SIZE=35
MAXLENGTH=254></TD></TR>
...

We could alter our program to set the form pairs with something like this:

...
"an" => $author || "",
"tn" => $title || "",
...

Moreover, if we wanted to allow the search to specify that only first editions should be shown, some
experimentation with formpairs.pl and our local copy of the form shows that checking the "First
Edition" checkbox produces a new form pair fe=on, between the bi= and prl= pairs, where
previously there was nothing. This jibes with the HTML source code:

<INPUT TYPE=CHECKBOX NAME=fe>First Edition

This could be modeled in our program with a variable $first_edition, which, if set to a true
value, produces that form pair; otherwise, it produces nothing:

...
 "bi" => "",
 $first_edition ? ("fe" => "on") : (),
 "prl" => "",
...

This can all be bundled up in a single routine that runs a search based on three given parameters:
author, title, and whether only first editions should be shown:

sub run_search {
 my($author, $title, $first_edition) = @_;
 my $response = $browser->post(
 'http://dogbert.abebooks.com/abe/BookSearch',
 [
 "ph" => "2",
 "an" => $author || "",
 "tn" => $title || "",
 "pn" => "",
 "sn" => "",
 "gpnm" => "All Book Stores",
 "cty" => "All Countries",
 "bi" => "Any Binding",
 $first_edition ? ("fe" => "on") : (),
 "prl" => "",
 "prh" => "",
 "sortby" => "0",
 "ds" => "100",
 "bu" => "Start Search",

]
);
 return $response;
}

That run_search() routine takes all we know about how any new-books query to ABEBooks
needs to be performed and puts it all in a single place. From here, we need only apply initialization
code and code to call the run_search routine, and do whatever needs doing with it:

use strict;
use LWP;
my $browser = LWP::UserAgent->new;
do_stuff();

sub do_stuff {
 my $response = run_search(# author, title, first edition
 '', 'Codex Seraphinianus', ''
);
 process_search($response, 'result_seraph.html');
}

sub process_search {
 my($response, $out_file) = @_;
 die "Error: ", $response->status_line, "\n"
 unless $response->is_success;
 open(OUT, ">$out_file") || die "Can't write-open $out_file:
$!";
 binmode(OUT);
 print OUT $response->content;
 close(OUT);
 print "Bytes saved: ", -s $out_file, " in $out_file\n";
 return;
}

5.6.4 Generalizing the Program

This program still just runs an ABEBooks search for books with the title "Codex Seraphinianus", and
saves the results to result_seraph.html. But the benefit of reshuffling the code as we did is that now,
by just changing do_stuff slightly, we change our program from being dedicated to running one
search, to being a generic tool for running any number of searches:

my @searches = (# outfile, author, title, first_edition
 ['result_seraph.html', '', 'Codex Seraphinianus', ''],
 ['result_vidal_1green.html', 'Gore Vidal', 'Dark Green
Bright Red', 1],
 ['result_marchand.html', 'Hans Marchand', 'Categories',
''],
 ['result_origins.html', 'Eric Partridge', 'Origins',
''],

 ['result_navajo.html', '', 'Navajo', ''],
 ['result_navaho.html', '', 'Navaho', ''],
 ['result_iroq.html', '', 'Iroquois', ''],
 ['result_tibetan.html', '', 'Tibetan', ''],
);
do_stuff();

sub do_stuff {
 foreach my $search (@searches) {
 my $out_file = shift @$search;
 my $resp = run_search(@$search);
 sleep 3; # Don't rudely query the ABEbooks server too
fast!
 process_search($resp, $out_file);
 }
}

Running this program saves each of those searches in turn:

% perl -w abesearch03.pl
Bytes saved: 15452 in result_seraph.html
Bytes saved: 57693 in result_vidal_1green.html
Bytes saved: 8009 in result_marchand.html
Bytes saved: 25322 in result_origins.html
Bytes saved: 125337 in result_navajo.html
Bytes saved: 128665 in result_navaho.html
Bytes saved: 127475 in result_iroq.html
Bytes saved: 130941 in result_tibetan.html

The user can then open each file and skim it for interesting new titles. Each book listed there comes
with a working absolute URL to a book detail page on the ABEBooks server, which can be used for
buying the book. For some of the queries that generate large numbers of results, it would be
particularly convenient to have do_stuff() actually track which books it has seen before (using
the book-detail URL of each) and report only on new ones:

my $is_first_time;
my (%seen_last_time, %seen_this_time, @new_urls);
sub do_stuff {
 if (-e 'seen_last_time.dat') {
 # Get URLs seen last time.
 open(LAST_TIME, "<seen_last_time.dat") || die $!;
 while (<LAST_TIME>) { chomp; $seen_last_time{$_} = 1 };
 close(LAST_TIME);
 } else {
 $is_first_time = 1;
 }

 foreach my $search (@searches) {
 my $out_file = shift @$search;

 my $resp = run_search(@$search);
 process_search($resp, $out_file);

 foreach my $url ($resp->content =~
 # Extract URLs of book-detail pages:

m{"(http://dogbert.abebooks.com/abe/BookDetails\?bi=[^\s\"]+)"
}g
){
 push @new_urls, $url unless $seen_last_time{$url}
 or $seen_this_time{$url};
 $seen_this_time{$url} = 1;
 }
 }

 # Save URLs for comparison next time.
 open(LAST_TIME, ">seen_last_time.dat") || die $!;
 for (keys %seen_this_time) { print LAST_TIME $_, "\n" }
 close(LAST_TIME);

 if($is_first_time) {
 print "(This was the first time this program was run.)\n";
 } elsif (@new_urls) {
 print "\nURLs of new books:\n";
 for (@new_urls) { print $_, "\n" }
 } else {
 print "No new books to report.\n";
 }
}

A typical run of this will produce output as above, but with this addendum:

URLs of new books:
http://dogbert.abebooks.com/abe/BookDetails?bi=24017010
http://dogbert.abebooks.com/abe/BookDetails?bi=4766571
http://dogbert.abebooks.com/abe/BookDetails?bi=110543730
http://dogbert.abebooks.com/abe/BookDetails?bi=58703369
http://dogbert.abebooks.com/abe/BookDetails?bi=93298753
http://dogbert.abebooks.com/abe/BookDetails?bi=93204427
http://dogbert.abebooks.com/abe/BookDetails?bi=24086008

5.7 File Uploads

So far we've discussed users entering text data that they type (or paste) into forms. But there's another
way to submit data: with a type=file form element, which allows users to select a file on their
local systems to upload when the form is submitted.

Currently, three things have to happen for a user to upload a file via a form. First, the program that
will be processing the form has to be expecting a file to be uploaded (you can't just alter the HTML
for any form and stick a type=file field into it). Second, the form has to have an <input
type=file name=whatever> element. And third, the form element has to have its attributes
set like so:

<form method=post enctype="multipart/form-data" action="url
">

This is necessary because file-upload fields can't be conveyed by the normal form-data encoding
system, but instead have to use the "multipart/form-data" encoding system (which,
incidentally, can be conveyed only across POST requests, not across GET requests).

Suppose, for example, that you were automating interaction with an HTML form that looked like this:

<form enctype="multipart/form-data" method=post
 action="http://pastel.int/feedback.pl">
Subject: <input name="subject" type="text">

File to process -- <input name="saywhat" type="file">

Your Name -- <input name="user" type="text">
<input type="submit" value="Send!"></form>

Modeling the first and third fields is as we've seen before -- a simple matter of $browser-
>post($url, ['subject'=>..., 'user'=>...]). But the file-upload part involves
some doing. First off, you have to add a header line of 'Content_Type' => 'form-data'
to mean that yes, you really mean this to be a "multipart/form-data" POSTing. And
secondly, where you would have a string in 'saywhat'=>text, you instead have an array
reference where the first array item is the path to the file you want to upload. So it ends up looking
like this:

my $response = $browser->post(
 'http://pastel.int/feedback.pl',
 ['subject' => 'Demand for pie.',
 'saywhat' => ["./today/earth_pies1.dml"],
 'user' => 'Adm. Kang',
],
 'Content_Type' => 'form-data',
 ...any other header lines...
);

Assume that ./today/earth_pies1.dml looks like this:

<?xml version="1.0" encoding='iso-8859-1' standalone="yes"?>
<Demand xml:lang="i-klingon">
 DaH chabmeyraj tunob!
</Demand>

The request that the above program actually sends will look like this:

--xYzZY
Content-Disposition: form-data; name="subject"

Demand for pie.
--xYzZY
Content-Disposition: form-data; name="saywhat";
filename="earth_pies1.dml"
Content-Length: 131
Content-Type: text/plain

<?xml version="1.0" encoding='iso-8859-1' standalone="yes"?>
<Demand xml:lang="i-klingon">
 DaH chabmeyraj tunob!
</Demand>

--xYzZY
Content-Disposition: form-data; name="user"

Adm. Kang
--xYzZY--

Note that each form-field is like a little HTTP message of its own, with its own set of headers and its
own body. For the "normal" fields (the first and third fields), the header basically expresses that this is
ordinary data for a particular field name, and the body expresses the form data. But for the
type=file field, we get the file's content as the body. Take a look at the header again:

Content-Disposition: form-data; name="saywhat";
filename="earth_pies1.dml"
Content-Length: 131
Content-Type: text/plain

The name="saywhat" expresses what the name="..." attribute was on the <input
type=file ...> element to which this corresponds, which we coded into our program in the
saywhat=>[...] line. But note that LWP also tells the remote host the basename of the file
we're uploading by default (i.e., the filename minus directory names) as well as its best guess at the
MIME type for that file. Because LWP (specifically, the LWP::MediaTypes module) has never heard
of the .dml extension, it falls back on text/plain. (If this file had clearly been a binary file, LWP
would call it application/octet-stream, the MIME type for general binary files.) In case
you want to change the name that LWP presents to the remote server, you can provide that name as a
second item in the arrayref:

fieldname => [local_filespec => as_what_name],

So if you change the saywhat line in the above program to this:

'saywhat' => ["./today/earth_pies1.dml" => "allyourpie.xml"],

Then the resulting headers on its part of the POST request would look like this:

Content-Disposition: form-data; name="saywhat";
filename="allyourpie.xml"
Content-Length: 131
Content-Type: text/plain

Although most applications that take file uploads across the Web pay no attention to the MIME types
(because so many browsers get them wrong), if you want to specify a MIME type for a particular file
upload, you could do so with a third item in the array reference:

fieldname => [local_filespec => as_what_name => MIME_type],

Like so:

'saywhat' => ["./today/earth_pies1.dml" => "allyourpie.xml"
 => "application/angry-ultimatum"],

Then the resulting headers on its part of the POST request would look like this:

Content-Disposition: form-data; name="saywhat";
filename="allyourpie.xml"
Content-Length: 131
Content-Type: application/angry-ultimatum

All these file-upload options work just as well for binary files (such as JPEGs) as for text files. Note,
however, that when LWP constructs and sends the request, it currently has to read into memory all
files you're sending in this request. If you're sending a 20-megabyte MP3 file, this might be a
problem! You can tell LWP not to read the files into memory by setting
$HTTP::Request::Common::DYNAMIC_FILE_UPLOAD = 1 (it bears explaining that
HTTP::Request::Common is the library that LWP uses for creating these file-upload requests), but
unfortunately, at the time of this writing, many servers and CGIs do not understand the resulting
HTTP POST request.

One especially neat trick is that you don't even need to have a file to upload to send a "file upload"
request. To send content from a string in memory instead of from a file on disk, use this syntax:

fieldname => [
 undef, # yes, undef!
 as_what_name,
 'Content_Type' => MIME_type,
 'Content' => data_to_send
],

For example, we could change our saywhat line in the above program to read:

'saywhat' => [
 undef,
 'allyourpie.xml',
 'Content_Type' => 'application/angry-ultimatum',
 'Content' => "All your pies are belong to me!\nGNAR!"

],

The resulting request will contain this chunk of data for the saywhat field:

Content-Disposition: form-data; name="saywhat";
filename="allyourpie.xml"
Content-Type: application/angry-ultimatum

All your pies are belong to me!
GNAR!

5.8 Limits on Forms

The examples in this chapter use approaches to form-data submission that work well for almost all
form systems that you'd run into, namely, systems where the form data is meant to be keyed into
HTML forms that do not change. Some form systems can't be treated with that approach because they
contain JavaScript code that can do just about anything, such as manipulate the form data in arbitrary
ways before sending it to the server. The best one can do in such cases is write Perl code that
replicates what the JavaScript code does, as needed.

Some form systems are problematic not because of JavaScript, but because the forms into which users
are meant to key data are not always the same each time they're loaded. In most cases, the extent of
change is merely a hidden form variable containing a session ID. These you can code around by using
LWP to download the form, extracting the session ID or other hidden fields, and submitting those
along with your other values.

In a few remaining cases where the form in question is predictable enough for a program to
manipulate it, but unpredictable enough that your program needs to carefully scrutinize its contents
each time before choosing what form data to submit, you may be able put to good use either of the two
CPAN modules that provide an abstracted interface to forms and the fields in them, HTML::Form and
HTTP::Request::Form.

HTML::Form is an LWP class for objects representing HTML forms. That is, it parses HTML source
that you give it and builds an object for the form, each form containing an object for each input
element in the form. HTML::Request::Form is quite similar, except it takes as input an
HTML::TreeBuilder tree, not HTML source text. In practice, however, those modules are needed in
very few cases, and the simpler strategies in this chapter will be enough for submitting just about any
form on the Web and processing the result.

Chapter 6. Simple HTML Processing with Regular
Expressions

The preceding chapters have been about getting things from the Web. But once you get a file, you
have to process it. If you get a GIF, you'll use some module or external program that reads GIFs and
likewise if you get a PNG, an RSS file, an MP3, or whatever. However, most of the interesting
processable information on the Web is in HTML, so much of the rest of this book will focus on
getting information out of HTML specifically.

In this chapter, we will use a rudimentary approach to processing HTML source: Perl regular
expressions. This technique is powerful and most web sites can be mined in this fashion. We present
the techniques of using regular expressions to extract data and show you how to debug those regular
expressions. Examples from Amazon, the O'Reilly Network, Netscape bookmark files, and the
Weather Underground web site demonstrate the techniques.

6.1 Automating Data Extraction

Suppose we want to extract information from an Amazon book page. The first problem is getting the
HTML. Browsing Amazon shows that the URL for a book page is
http://www.amazon.com/exec/obidos/ASIN/ISBN, where ISBN is the book's unique International
Standard Book Number. So to fetch the Perl Cookbook's page, for example:

#!/usr/bin/perl -w
use strict;
use LWP::Simple;

my $html =
get("http://www.amazon.com/exec/obidos/ASIN/1565922433")
 or die "Couldn't fetch the Perl Cookbook's page.";

The relevant piece of HTML looks like this:

<br clear="left">

Paperback
- 794 pages (August 1998)

O'Reilly & Associates;

ISBN: 1565922433
; Dimensions (in inches): 1.55 x 9.22 x 7.08

Amazon.com Sales Rank: 4,070

The easiest way to extract information here is to use regular expressions. For example:

$html =~ m{Amazon\.com Sales Rank: ([\d,]+)
};
$sales_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070

This regular expression describes the information we want (a string of digits and commas), as well as
the text around the text we're after (Amazon.com Sales Rank: and
). We use
curly braces to delimit the regular expression to avoid problems with the slash in , and we
use parentheses to capture the desired information. We save that information to $sales_rank,
then modify the variable's value to clean up the data we extracted.

The final program appears in Example 6-1.

Example 6-1. cookbook-rank

#!/usr/bin/perl -w
cookbook-rank - find rank of Perl Cookbook on Amazon

use LWP::Simple;

my $html =
get("http://www.amazon.com/exec/obidos/ASIN/1565922433")
 or die "Couldn't fetch the Perl Cookbook's page.";
$html =~ m{Amazon\.com Sales Rank: ([\d,]+)
}
|| die;
my $sales_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070
print "$sales_rank\n";

It's then straightforward to generalize the program by allowing the user to provide the ISBN on the
command line, as shown in Example 6-2.

Example 6-2. amazon-rank

#!/usr/bin/perl -w
amazon-rank: fetch Amazon rank given ISBN on cmdline

use LWP::Simple;

my $isbn = shift
 or die "usage:\n$0 ISBN\n";
my $html =
get("http://www.amazon.com/exec/obidos/ASIN/$isbn");

$html =~ m{Amazon\.com Sales Rank: ([\d,]+)
}
|| die;
my $sales_rank = $1;
$sales_rank =~ tr[,][]d; # 4,070 becomes 4070
print "$sales_rank\n";

We could take this program in any direction we wanted. For example, it would be a simple
enhancement to take a list of ISBNs from the command line or from STDIN, if none were given on
the command line. It would be trickier, but more useful, to have the program accept book titles instead
of just ISBNs. A more elaborate version of this basic program is one of O'Reilly's actual market
research tools.

6.2 Regular Expression Techniques

Web pages are designed to be easy for humans to read, not for programs. Humans are very flexible in
what they can read, and they can easily adapt to a new look and feel of the web page. But if the
underlying HTML changes, a program written to extract information from the page will no longer
work. Your challenge when writing a data-extraction program is to get a feel for the amount of natural
variation between pages you'll want to download.

The following are a set of techniques for you to use when creating regular expressions to extract data
from web pages. If you're an experienced Perl programmer, you probably know most or all of them
and can skip ahead to Section 6.3.

6.2.1 Anchor Your Match

An important decision is how much surrounding text you put into your regular expression. Put in too
much of this context and you run the risk of being too specific—the natural variation from page to
page causes your program to fail to extract some information it should have been able to get.
Similarly, put in too little context and you run the risk of your regular expression erroneously
matching elsewhere on the page.

6.2.2 Whitespace

Many HTML pages have whitespace added to make the source easier to read or as a side effect of how
they were produced. For example, notice the spaces around the number in this line:

Amazon.com Sales Rank: 4,070

Without checking, it's hard to guess whether every page has that space. You could check, or you could
simply be flexible in what you accept:

$html =~ m{Amazon\.com Sales Rank:
\s*([\d,]+)\s*
} || die;

Now we can match the number regardless of the amount of whitespace around it. The \s wildcard
matches any whitespace character.

6.2.3 Embedded Newlines

Beware of using \s when you are matching across multiple lines, because \s matches newlines. You
can construct a character class to represent "any whitespace but newlines":

[^\S\n]

As a further caveat, the regexp dot "." normally matches any character except a newline. To make the
dot match newlines as well, use the /s option. Now you can say m{.*?}s and find the
bold text even if it includes newlines. But this /s option doesn't change the meaning of ^ and $ from
their usual "start of string" and "end of string, or right before the newline at the end of the string if
present." To change that, use the /m option, which makes ^ and $ match the beginning and end of
lines within the string. That is, with /m, a ^ matches the start of the string or right after any newline in
the string; and a $ then matches the end of the string, or right before any newline in the string.

For example, to match the ISBN that starts out a line while ignoring any other occurrences of "ISBN"
in the page, you might say:

m{^ISBN: ([-0-9A-Za-z]+)}m

Incidentally, you might expect that because an ISBN is called a number, we'd use \d+ to match it.
However, ISBNs occasionally have letters in them and are sometimes shown with dashes; hence the
[-0-9A-Za-z] range instead of the overly restrictive \d+ range, which would fail to match an
ISBN such as 038079439X or 0-8248-1898-9.

6.2.4 Minimal and Greedy Matches

If you want to extract everything between two tags, there are two approaches:

m{(.*?)}i
m{([^<]*)}i

The former uses minimal matching to match as little as possible between the and the . The
latter uses greedy matching to match as much text that doesn't contain a greater-than sign as possible
between and . The latter is marginally faster but won't successfully match text such as
<i>hi</i>, whereas the former will.

6.2.5 Capture

To extract information from a regular expression match, surround part of the regular expression in
parentheses. This causes the regular expression engine to set the $1, $2, etc. variables to contain the
portions of the string that match those parts of the pattern. For example:

$string = 'go here now!';
$string =~ m{ href="(.*?)"}i; # extract destination of
link
$url = $1;

A match in scalar context returns true or false depending on whether the regular expression matched
the string. A match in list context returns a list of $1, $2, ... captured text.

$matched = $string =~ m{RE};
@matches = $string =~ m{RE};

To group parts of a regular expression together without capturing, use the (?:RE) construct:

$string = '';
@links = $string =~ m{(?:href|src)="(.*?)"}g;
print "Found @links\n";
Found jumbo.html big.gif

6.2.6 Repeated Matches

The /g modifier causes the match to be repeated. In scalar context, the match continues from where
the last match left off. Use this to extract information one match at a time. For example:

$string = '';
while ($string =~ m{src="(.*?)"}g) {
 print "Found: $1\n";
}
Found: big.gif
Found: small.gif

In list context, /g causes all matching captured strings to be returned. Use this to extract all matches
at once. For example:

$string = '';
@pix = $string =~ m{src="(.*?)"}g;
print "Found @pix\n";
Found big.gif small.gif

If your regular expression doesn't use capturing parentheses, the entire text that matches is returned:

$string = '';
@gifs = $string =~ m{\w+\.gif}g;
print "Found @gifs\n";
Found big.gif small.gif

6.2.7 Develop from Components

There are many reasons to break regular expressions into components—it makes them easier to
develop, debug, and maintain. Use the qr// operator to compile a chunk of a regular expression,
then interpolate it into a larger regular expression without sacrificing performance:

$string = '';
$ATTRIBUTE = qr/href|src/;
$INSIDE_QUOTES = qr/.*?/;
@files = $string =~ m{(?:$ATTRIBUTE)="($INSIDE_QUOTES)"}g;
print "Found @files\n";

Found jumbo.html big.gif

6.2.8 Use Multiple Steps

A common conceit in programmers is to try to do everything with one regular expression. Don't be
afraid to use two or more. This has the same advantages as building your regular expression from
components: by only attempting to solve one part of the problem at each step, the final solution can be
easier to read, debug, and maintain.

For example, the front page of http://www.oreillynet.com/ has several articles on it. Inspecting the
HTML with View Source on the browser shows that each story looks like this:

<!-- itemtemplate -->
<p class="medlist"><a
href="http://www.oreillynet.com/pub/a/dotnet/2002/03/04
/rotor.html">Uncovering Rotor -- A Shared Source
CLI ^M
 Recently, David Stutz and Stephen Walli hosted an informal,
unannounced BOF at
BSDCon 2002 about Microsoft's Shared Source implementation of
the ECMA CLI, also
known as Rotor. Although the source code for the Shared Source
CLI wasn't yet
available, the BOF offered a preview of what's to come, as
well as details about its
implementation and the motivation behind it. [<a
href="http://www.oreillynet.
com/dotnet/">.NET DevCenter]</p>

That is, the article starts with the itemtemplate comment and ends with the </p> tag. This
suggests a main loop of:

while ($html =~ m{<!-- itemtemplate -->(.*?)</p>}gs) {
 $chunk = $1;
 # extract URL, title, and summary from $chunk
}

It's surprisingly common to see HTML comments indicating the structure of the HTML. Most
dynamic web sites are generated from templates, the comments help the people who maintain the
templates keep track of the various sections.

Extracting the URL, title, and summary is straightforward. It's even a simple matter to use the standard
Text::Wrap module to reformat the summary to make it easy to read:

use Text::Wrap;

while ($html =~ m{<!-- itemtemplate -->(.*?)</p>}gs) {
 $chunk = $1;
 ($URL, $title, $summary) =

 $chunk =~
m{href="(.*?)">(.*?)\s* \s*(.*?)\[}i
 or next;
 $summary =~ s{ }{ }g;
 print "$URL\n$title\n", wrap(" ", " ", $summary), "\n\n";
}

Running this, however, shows HTML still in the summary. Remove the tags with:

$summary =~ s{<.*?>}{}sg;

The complete program is shown in Example 6-3.

Example 6-3. orn-summary

#!/usr/bin/perl -w

use LWP::Simple;
use Text::Wrap;

$html = get("http://www.oreillynet.com/") || die;

while ($html =~ m{<!-- itemtemplate -->(.*?)</p>}gs) {
 $chunk = $1;
 ($URL, $title, $summary) =
 $chunk =~
m{href="(.*?)">(.*?)\s* \s*(.*?)\[}i
 or next;
 $summary =~ s{ }{ }g;
 $summary =~ s{<.*?>}{}sg;
 print "$URL\n$title\n", wrap(" ", " ", $summary), "\n\n";
}

6.3 Troubleshooting

Both when developing and maintaining data extraction programs, things can go wrong. Suddenly,
instead of an article summary, you see a huge mass of HTML, or you don't get any output at all.
Several things might cause this. For example, the web site's HTML changed, or your program wasn't
flexible enough to deal with all the naturally occurring variations in the HTML.

There are two basic types of problems: false positives and false negatives. A false positive is when
your regular expression identifies something it thinks is the information you're after, but it isn't really.
For example, if the O'Reilly Network used the itemtemplate and summary format for things that
aren't articles, the summary extraction program in Example 6-3 would report headlines that aren't
really headlines.

There are two ways to deal with false positives. You can tighten your regular expression to prevent the
uninteresting piece of HTML from matching. For example, matching text with /[^<]*/ instead of

/.*?/ ensures the text has no HTML. The other way to prevent a false positive is to inspect the
results of the match to ensure they're relevant to your search. For example, in Example 6-3, we
checked that the URL, title, and summary were found when we decomposed the chunk.

A false negative is where your program fails to find information for which it is looking. There are also
two ways to fix this. The first is to relax your regular expression. For example, replace a single space
with /\s*/ to allow for any amount of whitespace. The second way is to make another pass through
the document with a separate regular expression or processing technique, to catch the data you missed
the first time around. For example, extract into an array all the things that look like news headlines,
then remove the first element from the array if you know it's always going to be an advertisement
instead of an actual headline.

Often the hardest part of debugging a regular expression is locating which part isn't matching or is
matching too much. There are some simple steps you can take to identify where your regular
expression is going wrong.

First, print the text you're matching against. Print it immediately before the match, so you are totally
certain what the regular expression is being applied to. You'd be surprised at the number of subtle
ways the page your program fetches can differ from the page for which you designed the regular
expression.

Second, put capturing parentheses around every chunk of the regular expression to see what's
matching. This lets you find runaway matches, i.e., places where a quantifier matches too much. For
example, the /.*/ intended to skip just the formatting HTML might instead skip the formatting
HTML, three entries, and another piece of formatting HTML. In such situations, it's typically because
either the thing being quantified was too general (e.g., instead of the dot, we should have had
/[^<]/ to avoid matching HTML), or because the literal text after the quantifier wasn't enough to
identify the stop point. For example, /<font/ instead of /<font size=-1/ might make a
minimal quantifier stop too soon (at the first font tag, instead of the correct font tag) or a greedy
quantifier match too much (at the last font tag, instead of the last size=-1 font tag).

If the regular expression you've created isn't matching at all, repeatedly take the last chunk off the
regular expression until it does match. The last bit you removed was causing the match to fail, so
inspect it to see why.

For example, let's find out why this isn't matching:

$text = qq(DogWoof\nWoof</p>);
($file, $title, $summary) =
 $text =~ m{(.*?)\s*(.*?)</p>};

Taking the last piece off yields this regular expression:

(.*?)\s*(.*?)

This matches. This tells us that /</p>/ wasn't being found after /(.*?)/ matched. We're not
going to see much if we print $3 at this point, as we're matching minimally, and without something
forcing the quantifier to match more than 0, it'll be happy to match nothing.

The way around this is to remove the minimal matching—how much could it match?

(.*?)\s*(.*)

Printing $3 now show us that /.*/ is matching only Woof, instead of Woof\nWoof. The
newline should be the giveaway—we need to add the /s modifier to the original regular expression
(be sure to change the /.*/ back to /.*?/!) to ensure that summaries with embedded newlines are
correctly located.

6.4 When Regular Expressions Aren't Enough

Regular expressions are powerful, but they can't describe everything. In particular, nested structures
(for example, lists containing lists, with any amount of nesting possible) and comments are tricky.
While you can use regular expressions to extract the components of the HTML and then attempt to
keep track of whether you're in a comment or to which nested array you're adding elements, these
types of programs rapidly balloon in complexity and become maintenance nightmares.

The best thing to do in these situations is to use a real HTML tokenizer or parser such as
HTML::Parser, HTML::TokeParser, and HTML::TreeBuilder (all demonstrated in the next chapter),
and forego your regular expressions.

6.5 Example: Extracting Links from a Bookmark File

Suppose we want to delegate to a Perl program the task of checking URLs in my Netscape bookmark
file. I'm told that this isn't the same format as is used in newer Netscapes. But, antiquarian that I am, I
still use Netscape 4.76, and this is what the file looks like:

<!DOCTYPE NETSCAPE-Bookmark-file-1>
<!-- This is an automatically generated file.
It will be read and overwritten.
Do Not Edit! -->
<TITLE>Bookmarks for Sean M. Burke</TITLE>
<H1>Bookmarks for Sean M. Burke</H1>

<DL><p>
 <DT><H3 ADD_DATE="911669103">Personal Toolbar Folder</H3>
 <DL><p>
 <DT><A HREF="http://libros.unm.edu/" ADD_DATE="908672224"
...
 <DT><A HREF="http://www.melvyl.ucop.edu/"
ADD_DATE="900184542" ...
 <DT><A HREF="http://www.guardian.co.uk/"
ADD_DATE="935897798" ...
 <DT><A HREF="http://www.booktv.org/schedule/"
ADD_DATE="935897798" ...
 <DT><A HREF="http://www.suck.com/" ADD_DATE="942604862"
...
 ...and so on...

There are three important things we should note here:

• Each bookmark item is on a line of its own. This means we can use the handy Perl idioms for
line-at-a-time processing such as while(<IN>) {...} or @lines = <IN>.

• Every URL is absolute. There are no relative URLs such as HREF="../stuff.html".
That means we don't have to bother with making URLs absolute (not yet, at least).

• The only thing we want from this file is the URL in the HREF="...url..." part of the
line—and if there is no HREF on the line, we can ignore this line. This practically begs us to
use a Perl regexp!

So we scan the file one line at a time, find URLs in lines that have a HREF="...url..." in
them, then check those URLs. Example 6-4 shows such a program.

Example 6-4. bookmark-checker

#!/usr/bin/perl -w
bookmark-checker - check URLs in Netscape bookmark file

use strict;
use LWP;
my $browser;
my $bmk_file = $ARGV[0]
 || 'c:/Program Files/Netscape/users/sburke/bookmark.htm';
open(BMK, "<$bmk_file") or die "Can't read-open $bmk_file:
$!";

while (<BMK>) {
 check_url($1) if m/ HREF="([^"\s]+)" /;
}

print "# Done after ", time - $^T, "s\n";
exit;

my %seen; # for tracking which URLs we've already checked

sub check_url {
 # Try to fetch the page and report failure if it can't be
found
 # This routine even specially reports if the URL has changed
 # to be on a different host.

 my $url = URI->new($_[0])->canonical;

 # Skip mailto: links, and in fact anything not http:...
 return unless $url->scheme() eq 'http';

 # Kill anything like '#staff' in
'http://luddites.int/them.txt#staff'
 $url->fragment(undef);

 # Kill anything like the currently quite useless but

 # occasionally occurring 'jschmo@' in
 # 'http://jschmo@luddites.int/them.txt'
 # (It's useless because it doesn't actually show up
 # in the request to the server in any way.)
 $url->userinfo(undef);

 return if $seen{$url}; # silently skip duplicates
 $seen{$url} = 1;

 init_browser() unless $browser;
 my $response = $browser->head($url);
 my $found = URI->new($response->request->url)->canonical;
 $seen{$found} = 1; # so we don't check it later.

 # If the server complains that it doesn't understand "HEAD",
 # (405 is "Method Not Allowed"), then retry it with "GET":
 $response = $browser->get($found) if $response->code == 405;

 if($found ne $url) {
 if($response->is_success) {
 # Report the move, only if it's a very different URL.
 # That is, different schemes, or different hosts.
 if(
 $found->scheme ne $url->scheme
 or
 lc($found->can('host') ? $found->host : '')
 ne
 lc($url->can('host') ? $url->host : '')
) {
 print "MOVED: $url\n -> $found\n",
 }

 } else {
 print "MOVED: $url\n -> $found\n",
 " but that new URL is bad: ",
 $response->status_line(), "\n"
 }
 } elsif($response->is_success) {
 print "## okay: $url\n";
 } else {
 print "$url is bad! ", $response->status_line, "\n";
 }
 return;
}

sub init_browser {
 $browser = LWP::UserAgent->new;

 # Speak only HTTP - no mailto or FTP or anything.

 $browser->protocols_allowed(['http']);

 # And any other initialization we might need to do.

 return $browser;
}

And for this rigidly formatted input file, our line-at-a-time regexp-based approach works just fine; our
simple loop:

while (<BMK>) { check_url($1) if m/ HREF="([^"\s]+)" / }

really does catch every URL in my Netscape bookmark file.

.6 Example: Extracting Linksfrom Arbitrary HTML

Suppose that the links we want to check are in a remote HTML file that's not quite as rigidly formatted
as my local bookmark file. Suppose, in fact, that a representative section looks like this:

<p>Dear Diary,

I was listening to Fresh
Air the other day and they had Linus Torvalds
on,
and he was going on about how he wrote some kinda
program or something. If
he's so smart, why didn't he write something useful, like Tetris or <a
href="../minesweeper_hints/"
>Minesweeper, huh?

In the case of the bookmarks, we noted that links were each alone on a line, all absolute, and each
capturable with m/ HREF="([^"\s]+)" /. But none of those things are true here! Some links
(such as href="why_I_love_tetris.html") are relative, some lines have more than one
link in them, and one link even has a newline between its href attribute name and its ="..."
attribute value.

Regexps are still usable, though—it's just a matter of applying them to a whole document (instead of
to individual lines) and also making the regexp a bit more permissive:

while ($document =~ m/\s+href\s*=\s*"([^"\s]+)"/gi) {
 my $url = $1;
 ...
}

(The /g modifier ("g" originally for "globally") on the regexp tries to match the pattern as many times
as it can, each time picking up where the last match left off.)

Example 6-5 shows this basic idea fleshed out to include support for fetching a remote document,
matching each link in it, making each absolute, and calling a checker routine (currently a placeholder)
on it.

Example 6-5. diary-link-checker

#!/usr/bin/perl -w
diary-link-checker - check links from diary page

use strict;
use LWP;

my $doc_url = "http://chichi.diaries.int/stuff/diary.html";
my $document;
my $browser;
init_browser();

{ # Get the page whose links we want to check:
 my $response = $browser->get($doc_url);
 die "Couldn't get $doc_url: ", $resp->status_line
 unless $response->is_success;
 $document = $response->content;
 $doc_url = $response->request->base;
 # In case we need to resolve relative URLs later
}

while ($document =~ m/href\s*=\s*"([^"\s]+)"/gi) {
 my $absolute_url = absolutize($1, $doc_url);
 check_url($absolute_url);
}

sub absolutize {
 my($url, $base) = @_;
 use URI;
 return URI->new_abs($url, $base)->canonical;
}

sub init_browser {
 $browser = LWP::UserAgent->new;
 # ...And any other initialization we might need to do...
 return $browser;
}

sub check_url {
 # A temporary placeholder...
 print "I should check $_[0]\n";
}

When run, this prints:

I should check http://www.freshair.com/
I should check http://www.cs.Helsinki.FI/u/torvalds/
I should check http://www.linux.org/
I should check
http://chichi.diaries.int/stuff/why_I_love_tetris.html
I should check http://chichi.diaries.int/minesweeper_hints/

So our while (regexp) loop is indeed successfully matching all five links in the document.
(Note that our absolutize routine is correctly making the URLs absolute, as with turning
why_I_love_tetris.html into http://chichi.diaries.int/stuff/why_I_love_tetris.html and
../minesweeper_hints/ into http://chichi.diaries.int/minesweeper_hints/ by using the URI class that we
explained in Chapter 4.)

Now that we're satisfied that our program is matching and absolutizing links correctly, we can drop in
the check_url routine from the Example 6-4, and it will actually check the URLs that the our
placeholder check_url routine promised we'd check.

6.7 Example: Extracting Temperatures from Weather
Underground

The Weather Underground web site (http://www.wunderground.com) is a great source of
meteorological information. Let's write a program to tell us which of the two O'Reilly offices,
Cambridge and Sebastopol, is warmer and by how many degrees.

First, we fetch the pages with the temperatures. A quick look around the Weather Underground site
indicates that the best way to get the temperature for a place is to fetch a URL like:

http://www.wunderground.com/cgi-
bin/findweather/getForecast?query=95472

95472 is the Zip Code for the Sebastopol office, while 02140 is the Zip Code for the Cambridge
office. The program begins by fetching those pages:

#!/usr/bin/perl -w

use strict;
use LWP::Simple;

my $url = "http://www.wunderground.com/cgi-
bin/findweather/getForecast?query=";
my $ca = get("${url}95472"); # Sebastopol, California
my $ma = get("${url}02140"); # Cambridge, Massachusetts

Next, we need to extract the temperature from the HTML. Viewing the source to one of the pages
reveals the relevant portion as:

<tr ><td>Temperature</td>
<td>52° F</td></tr>

Because we need to extract the temperature from multiple pages, we define a subroutine that takes the
HTML string and returns the temperature:

sub current_temp {
 local $_ = shift;
 m{<tr ><td>Temperature</td>\s+<td>(\d+)} || die "No temp
data?";
 return $1;
}

Now all that's left to do is extract the temperatures and display the message:

my $ca_temp = current_temp($ca);
my $ma_temp = current_temp($ma);
my $diff = $ca_temp - $ma_temp;

print $diff > 0 ? "California" : "Massachusetts";
print " is warmer by ", abs($diff), " degrees F.\n";

When you run the program, you see something like:

% ora-temps
California is warmer by 21 degrees F.

The complete program is shown in Example 6-6.

Example 6-6. ora-temps

#!/usr/bin/perl -w

use strict;
use LWP::Simple;

my $url = "http://www.wunderground.com/cgi-
bin/findweather/getForecast?"
 . "query=";
my $ca = get("${url}95472"); # Sebastopol, California
my $ma = get("${url}02140"); # Cambridge, Massachusetts

my $ca_temp = current_temp($ca);
my $ma_temp = current_temp($ma);
my $diff = $ca_temp - $ma_temp;

print $diff > 0 ? "California" : "Massachusetts";
print " is warmer by ", abs($diff), " degrees F.\n";

sub current_temp {
 local $_ = shift;

 m{<tr ><td>Temperature</td>\s+<td>(\d+)} || die "No temp
data?";
 return $1;
}

Chapter 7. HTML Processing with Tokens

Regular expressions are powerful, but they're a painfully low-level way of dealing with HTML.
You're forced to worry about spaces and newlines, single and double quotes, HTML comments, and a
lot more. The next step up from a regular expression is an HTML tokenizer. In this chapter, we'll use
HTML::TokeParser to extract information from HTML files. Using these techniques, you can extract
information from any HTML file, and never again have to worry about character-level trivia of HTML
markup.

7.1 HTML as Tokens

Your experience with HTML code probably involves seeing raw text such as this:

<p>Dear Diary,

I'm gonna be a superstar, because I'm learning to play
the balalaika & the
bazouki!!!

The HTML::TokeParser module divides the HTML into units called tokens, which means units of
parsing. The above source code is parsed as this series of tokens:

start-tag token

p with no attributes

text token

Dear Diary,\n

start-tag token

br with no attributes

text token

I'm gonna be a superstar, because I'm learning to
play\nthe

start-tag token

a, with attribute href whose value is http://MyBalalaika.com

text token

balalaika

end-tag token

a

text token

& the , which means & the

start-tag token

a, with attribute href equals http://MyBazouki.com

text token

bazouki

end-tag token

a

text token

!!!\n

This representation of things is more abstract, focusing on markup concepts and not individual
characters. So whereas the two <a> tags have different types of quotes around their attribute values in
the raw HTML, as tokens each has a start-tag of type a, with an href attribute of a particular value.
A program that extracts information by working with a stream of tokens doesn't have to worry about
the idiosyncrasies of entity encoding, whitespace, quotes, and trying to work out where a tag ends.

7.2 Basic HTML::TokeParser Use

The HTML::TokeParser module is a class for accessing HTML as tokens. An HTML::TokeParser
object gives you one token at a time, much as a filehandle gives you one line at a time from a file. The
HTML can be tokenized from a file or string. The tokenizer decodes entities in attributes, but not
entities in text.

Create a token stream object using one of these two constructors:

my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";

or:

my $stream = HTML::TokeParser->new(\$string_of_html);

Once you have that stream object, you get the next token by calling:

my $token = $stream->get_token();

The $token variable then holds an array reference, or undef if there's nothing left in the stream's
file or string. This code processes every token in a document:

my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";

while(my $token = $stream->get_token) {
 # ... consider $token ...
}

The $token can have one of six kinds of values, distinguished first by the value of $token-
>[0], as shown in Table 7-1.

Table 7-1. Token types
Token Values

Start-tag
["S", $tag, $attribute_hashref,
$attribute_order_arrayref, $source]

End-tag ["E", $tag, $source]

Text ["T", $text, $should_not_decode]

Comment ["C", $source]

Declaration ["D", $source]

Processing
instruction

["PI", $content, $source]

7.2.1 Start-Tag Tokens

If $token->[0] is "S", the token represents a start-tag:

["S", $tag, $attribute_hash, $attribute_order_arrayref,
$source]

The components of this token are:

$tag

The tag name, in lowercase.

$attribute_hashref

A reference to a hash encoding the attributes of this tag. The (lowercase) attribute names are
the keys of the hash.

$attribute_order_arrayref

A reference to an array of (lowercase) attribute names, in case you need to access elements in
order.

$source

The original HTML for this token.

The first three values are the most interesting ones, for most purposes.

For example, parsing this HTML:

<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk"
WIDTH=352 height=522>

gives this token:

[
 'S',
 'img',
 { 'alt' => 'Shatner in rôle of Kirk',
 'height' => '522', 'src' => 'kirk.jpg', 'width' => '352'
 },
 ['src', 'alt', 'width', 'height'],
 '<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk"
WIDTH=352 height=522>'
]

Notice that the tag and attribute names have been lowercased, and the ô entity decoded
within the alt attribute.

7.2.2 End-Tag Tokens

When $token->[0] is "E", the token represents an end-tag:

["E", $tag, $source]

The components of this tag are:

$tag

The lowercase name of the tag being closed.

$source

The original HTML for this token.

Parsing this HTML:

gives this token:

['E', 'a', '']

7.2.3 Text Tokens

When $token->[0] is "T", the token represents text:

["T", $text, $should_not_decode]

The elements of this array are:

$text

The text, which may have entities.

$should_not_decode

A Boolean value true indicating that you should not decode the entities in $text.

Tokenizing this HTML:

& the

gives this token:

['T',
 ' & the',
 ''
]

The empty string is a false value, indicating that there's nothing stopping us from decoding $text
with decode_entities() from HTML::Entities:

decode_entities($token->[1]) if $token->[2];

Text inside <script>, <style>, <xmp>, <listing>, and <plaintext> tags is not
supposed to be entity-decoded. It is for such text that $should_not_decode is true.

7.2.4 Comment Tokens

When $token->[0] is "C", you have a comment token:

["C", $source]

The $source component of the token holds the original HTML of the comment. Most programs
that process HTML simply ignore comments.

Parsing this HTML

<!-- Shatner's best known rôle -->

gives us this $token value:

['C', #0: we're a comment
 '<!-- Shatner's best known rôle -->' #1: source
]

7.2.5 Markup Declaration Tokens

When $token->[0] is "D", you have a declaration token:

["D", $source]

The $source element of the array is the HTML of the declaration. Declarations rarely occur in
HTML, and when they do, they are rarely of any interest. Almost all programs that process HTML
ignore declarations.

This HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">

gives this token:

['D',
 '<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">'
]

7.2.6 Processing Instruction Tokens

When $token->[0] is "PI", the token represents a processing instruction:

["PI", $instruction, $source]

The components are:

$instruction

The processing instruction stripped of initial <? and trailing >.

$source

The original HTML for the processing instruction.

A processing instruction is an SGML construct rarely used in HTML. Most programs extracting
information from HTML ignore processing instructions. If you do handle processing instructions, be
warned that in SGML (and thus HTML) a processing instruction ends with a greater-than (>), but in

XML (and thus XHTML), a processing instruction ends with a question mark and a greater-than sign
(?>).

Tokenizing:

<?subliminal message>

gives:

['PI', 'subliminal message', '<?subliminal message>']

7.3 Individual Tokens

Now that you know the composition of the various types of tokens, let's see how to use
HTML::TokeParser to write useful programs. Many problems are quite simple and require only one
token at a time. Programs to solve these problems consist of a loop over all the tokens, with an if
statement in the body of the loop identifying the interesting parts of the HTML:

use HTML::TokeParser;
my $stream = HTML::TokeParser->new($filename)
 || die "Couldn't read HTML file $filename: $!";
For a string: HTML::TokeParser->new(\$string_of_html);

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'T') { # text
 # process the text in $text->[1]

 } elsif ($token->[0] eq 'S') { # start-tag
 my($tagname, $attr) = @$token[1,2];
 # consider this start-tag...

 } elsif ($token->[0] eq 'E') {
 my $tagname = $token->[1];
 # consider this end-tag
 }

 # ignoring comments, declarations, and PIs
}

7.3.1 Checking Image Tags

Example 7-1 complains about any img tags in a document that are missing alt, height, or
width attributes:

Example 7-1. Check tags

while(my $token = $stream->get_token) {

 if($token->[0] eq 'S' and $token->[1] eq 'img') {
 my $i = $token->[2]; # attributes of this img tag
 my @lack = grep !exists $i->{$_}, qw(alt height width);
 print "Missing for ", $i->{'src'} || "????", ": @lack\n"
if @lack;
 }
}

When run on an HTML stream (whether from a file or a string), this outputs:

Missing for liza.jpg: height width
Missing for aimee.jpg: alt
Missing for laurie.jpg: alt height width

Identifying images has many applications: making HEAD requests to ensure the URLs are valid, or
making a GET request to fetch the image and using Image::Size from CPAN to check or insert the
height and width attributes.

7.3.2 HTML Filters

A similar while loop can use HTML::TokeParser as a simple code filter. You just pass through the
$source from each token you don't mean to alter. Here's one that passes through every tag that it
sees (by just printing its source as HTML::TokeParser passes it in), except for img start-tags, which
get replaced with the content of their alt attributes:

while (my $token = $stream->get_token) {
 if ($token->[0] eq 'S') {
 if ($token->[1] eq 'img') {
 print $token->[2]{'alt'} || '';
 } else {
 print $token->[4];
 }
 }
 elsif($token->[0] eq 'E') { print $token->[2] }
 elsif($token->[0] eq 'T') { print $token->[1] }
 elsif($token->[0] eq 'C') { print $token->[1] }
 elsif($token->[0] eq 'D') { print $token->[1] }
 elsif($token->[0] eq 'PI') { print $token->[2] }
}

So, for example, a document consisting just of this:

<!-- new entry -->
<p>Dear Diary,

This is me & my balalaika, at BalalaikaCon 1998:
 Rock on!</p>

is then spat out as this:

<!-- new entry -->
<p>Dear Diary,

This is me & my balalaika, at BalalaikaCon 1998:
BC1998! WHOOO! Rock on!</p>

7.4 Token Sequences

Some problems cannot be solved with a single-token approach. Often you need to scan for a sequence
of tokens. For example in Chapter 4, we extracted the Amazon sales rank from HTML like this:

Amazon.com Sales Rank: 4,070

Here we're looking for the text Amazon.com Sales Rank: , an end-tag for b, and the next
token as a text token with the sales rank. To solve this, we need to check the next few tokens while
being able to put them back if they're not what we expect.

To put tokens back into the stream, use the unget_token() method:

$stream->unget_token(@next);

The tokens stored in @next will be returned to the stream. For example, to solve our Amazon
problem:

while (my $token = $stream->get_token()) {
 if ($token->[0] eq 'T' and
 $token->[1] eq 'Amazon.com Sales Rank: ') {
 my @next;
 push @next, $stream->get_token();
 my $found = 0;
 if ($next[0][0] eq 'E' and $next[0][1] eq 'b') {
 push @next, $stream->get_token();
 if ($next[1][0] eq 'T') {
 $sales_rank = $next[1][1];
 $found = 1;
 }
 }
 $stream->unget_token(@next) unless $found;
 }
}

If it's the text we're looking for, we cautiously explore the next tokens. If the next one is a end-
tag, check the next token to ensure that it's text. If it is, then that's the sales rank. If any of the tests fail,
put the tokens back on the stream and go back to processing.

7.4.1 Example: BBC Headlines

Suppose, for example, that your morning ritual is to have the help come and wake you at about 11
a.m. as they bring two serving trays to your bed. On one tray there's a croissant, some pain au
chocolat, and of course some café au lait, and on the other tray, your laptop with a browser window
already open on each story from BBC News's front page (http://news.bbc.co.uk). However, the help
have been getting mixed up lately and opening the stories on The Guardian's web site, and that's a bit
awkward, since clearly The Guardian is an after-lunch paper. You'd say something about it, but one
doesn't want to make a scene, so you just decide to write a program that the help can run on the laptop
to find all the BBC story URLs.

So you look at the source of http://news.bbc.co.uk and discover that each headline link is wrapped in
one of two kinds of code. There are lots of headlines in code such as these:

<B CLASS="h3">Bank
of England mulls rate cut

<B CLASS="h3">Euro
battle revived by Blair speech

and also some headlines in code like this:

 <B class="h2"> Swissair shares wiped out

<A
href="/hi/english/world/middle_east/newsid_1576000/1576113.stm
">
 <B class="h1">Mid-East blow to US anti-terror drive

(Note that the a start-tag's class value can be h1 or h2.)

Studying this, you realize that this is how you find the story URLs:

• Every time there's a B start-tag with class value of h3, and then an A start-tag with an href
value, save that href.

• Every time there's an A start-tag with an href value, a text token consisting of just
whitespace, and then a B start-tag with a class value of h1 or h2, save the first token's href
value.

7.4.2 Translating the Problem into Code

We can take some shortcuts when translating this into $stream->unget_token($token)
code. The following HTML is typical:

<B CLASS="h3">Top Stories

...

<B CLASS="h3">Bank
of England mulls rate cut

When we see the first B-h3 start-tag token, we think it might be the start of a B-h3-A-href
pattern. So we get another token and see if it's an A-href token. It's not (it's the text token Top
Stories), so we put it back into the stream (useful in case some other pattern we're looking for
involves that being the first token), and we keep looping. Later, we see another B-h3, we get another
token, and we inspect it to see if it's an A-href token. This time it is, so we process its href value
and resume looping. There's no reason for us to put that a-href back, so the next iteration of the
loop will resume with the next token being Bank of England mulls rate cut.

sub scan_bbc_stream {
 my($stream, $docbase) = @_;

 Token:
 while(my $token = $stream->get_token) {

 if ($token->[0] eq 'S' and $token->[1] eq 'b' and
 ($token->[2]{'class'} || '') eq 'h3') {
 # The href we want is in the NEXT token... probably.
 # Like: <B CLASS="h3">

 my(@next) = ($stream->get_token);

 if ($next[0] and $next[0][0] eq 'S' and $next[0][1] eq
'a' and
 defined $next[0][2]{'href'}) {
 # We found ! This rule matches!
 print URI->new_abs($next[0][2]{'href'}, $docbase),
"\n";
 next Token;
 }
 # We get here only if we've given up on this rule:
 $stream->unget_token(@next);
 }

 # fall thru to subsequent rules here...

 }
 return;
}

The general form of the rule above is this: if the current token looks promising, pull off a token and
see if that looks promising too. If, at any point, we see an unexpected token or hit the end of the
stream, we restore what we've pulled off (held in the temporary array @next), and continue to try
other rules. But if all the expectations in this rule are met, we make it to the part that processes this
bunch of tokens (here it's just a single line, which prints the URL), and then call next Token to
start another iteration of this loop without restoring the tokens that have matched this pattern. (If you

are disturbed by this use of a named block and lasting and nexting around, consider that this
could be written as a giant if/else statement at the risk of potentially greater damage to what's left
of your sanity.)

Each such rule, then, can pull from the stream however many tokens it needs to either match or reject
the pattern it's after. Either it matches and starts another iteration of this loop, or it restores the stream
to exactly the way it was before this rule started pulling from it. This business of a temporary @next
list may seem like overkill when we only have to look one token ahead, only ever looking at
$next[0]. However, the if block for the next pattern (which requires looking two tokens ahead)
shows how the same framework can be accommodating:

Add this right after the first if-block ends.
if($token->[0] eq 'S' and $token->[1] eq 'a' and
 defined $token->[2]{'href'}) {
 # Like: <B class="h2">

 my(@next) = ($stream->get_token);
 if ($next[0] and $next[0][0] eq 'T' and $next[0][1] =~
m/^\s+/s) {
 # We found whitespace.
 push @next, $stream->get_token;
 if ($next[1] and $next[1][0] eq 'S' and $next[1][1] eq
'b' and
 ($next[1][2]{'class'} || '') =~ m/^h[12]$/s) {
 # We found <b class="h2">! This rule matches!
 print URI->new_abs($token->[2]{'href'}, $docbase),
"\n";
 next Token;
 }
 }
 # We get here only if we've given up on this rule:
 $stream->unget_token(@next);
}

7.4.3 Bundling into a Program

With all that wrapped up in a pure function scan_bbc_stream(), we can test it by first saving
the contents of http://news.bbc.co.uk locally as bbc.html (which we probably already did to scrutinize
its source code and figure out what HTML patterns surround headlines), and then calling this:

use strict;
use HTML::TokeParser;
use URI;

scan_bbc_stream(
 HTML::TokeParser->new('bbc.html') || die($!),
 'http://news.bbc.co.uk/' # base URL
);

When run, this merrily scans the local copy and say:

http://news.bbc.co.uk/hi/english/world/middle_east/newsid_1576
000/1576113.stm
http://news.bbc.co.uk/hi/english/world/south_asia/newsid_15760
00/1576186.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/15
76051.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/15766
36.stm
http://news.bbc.co.uk/sport/hi/english/in_depth/2001/england_i
n_zimbabwe/newsid_
1574000/1574824.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/15765
46.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576313.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/15
76541.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/15762
90.stm
http://news.bbc.co.uk/hi/english/entertainment/music/newsid_15
76000/1576599.stm
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1574000/15740
48.stm
http://news.bbc.co.uk/hi/english/health/newsid_1576000/1576776
.stm
http://news.bbc.co.uk/hi/english/in_depth/uk_politics/2001/con
ferences_2001/labour/
newsid_1576000/1576086.stm

At least that's what the program said once I got scan_bbc_stream() in its final working state
shown above. As I was writing it and testing bits of it, I could run and re-run the program, scanning
the same local file. Then once it's working on the local file (or files, depending on how many test
cases you have), you can write the routine that gets what's at a URL, makes a stream pointing to its
content, and runs a given scanner routine (such as scan_bbc_stream()) on it:

my $browser;
BEGIN {
 use LWP::UserAgent;
 $browser = LWP::UserAgent->new;
 # and any other $browser initialization code here
}

sub url_scan {
 my($scanner, $url) = @_;
 die "What scanner function?" unless $scanner and
ref($scanner) eq 'CODE';
 die "What URL?" unless $url;

 my $resp = $browser->get($url);
 die "Error getting $url: ", $resp->status_line
 unless $resp->is_success;
 die "It's not HTML, it's ", $resp->content_type
 unless $resp->content_type eq 'text/html';

 my $stream = HTML::TokeParser->new($resp->content_ref)
 || die "Couldn't make a stream from $url\'s content!?";
 # new() on a string wants a reference, and so that's what
 # we give it! HTTP::Response objects just happen to
 # offer a method that returns a reference to the content.
 $scanner->($stream, $resp->base);
}

If you thought the contents of $url could be very large, you could save the contents to a temporary
file, and start the stream off with HTML::TokeParser->new($tempfile). With the above
url_scan(), to retrieve the BBC main page and scan it, you need only replace our test statement
that scans the input stream, with this:

url_scan(\&scan_bbc_stream, 'http://news.bbc.co.uk/');

And then the program outputs the URLs from the live BBC main page (or will die with an error
message if it can't get it). To actually complete the task of getting the printed URLs to each open a
new browser instance, well, this depends on your browser and OS, but for my MS Windows laptop
and Netscape, this Perl program will do it:

my $ns = "c:\\program
files\\netscape\\communicator\\program\\netscape.exe";
die "$ns doesn't exist" unless -e $ns;
die "$ns isn't executable" unless -x $ns;
while (<>) { chomp; m/\S/ and system($ns, $_) and die $!; }

This is then called as:

C:\perlstuff> perl bbc_urls.pl | perl urls2ns.pl

Under Unix, the correct system() command is:

system("netscape '$url' &")

7.5 More HTML::TokeParser Methods

Example 7-1 illustrates that often you aren't interested in every kind of token in a stream, but care only
about tokens of a certain kind. The HTML::TokeParser interface supports this with three methods,
get_tag(), get_text(), and get_trimmed_text() that do something other than
simply get the next token.

$text_string = $stream->get_text();

If the next token is text, return its value.

$text_string = $stream->get_text('foo');

Return all text up to the next foo start-tag.

$text_string = $stream->get_text('/bar');

Return all text up to the next /bar end-tag.

$text = $stream->get_trimmed_text();
$text = $stream->get_trimmed_text('foo');
$text = $stream->get_trimmed_text('/bar');

Like get_text() calls, except with initial and final whitespace removed, and all other
whitespace collapsed.

$tag_ref = $stream->get_tag();

Return the next start-tag or end-tag token.

$tag_ref = $stream->get_tag('foo', '/bar', 'baz');

Return the next foo start-tag, /bar end-tag, or baz start-tag.

We will explain these methods in detail in the following sections.

7.5.1 The get_text() Method

The get_text() syntax is:

$text_string = $stream->get_text();

If $stream's next token is text, this gets it, resolves any entities in it, and returns its string value.
Otherwise, this returns an empty string.

For example, if you are parsing this snippet:

<h1 lang='en-GB'>Shatner Reprises Kirk Rôle</h1>

and have just parsed the token for h1, $stream->get_text() returns "Shatner Reprises
Kirk Rôle." If you call it again (and again and again), it will return the empty string, because the next
token waiting is not a text token but an h1 end-tag token.

7.5.2 The get_text() Method with Parameters

The syntax for get_text() with parameters is:

$text_string = $stream->get_text('foo');
$text_string = $stream->get_text('/bar');

Specifying a foo or /bar parameter changes the meaning of get_text(). If you specify a tag,
you get all the text up to the next time that tag occurs (or until the end of the file, if that tag never
occurs).

For however many text tokens are found, their text values are taken, entity sequences are resolved, and
they are combined and returned. (All the other sorts of tokens seen along the way are just ignored.)

Note that the tag name that you specify (whether foo or /bar) must be in lowercase.

This sounds complex, but it works out well in real use. For example, imagine you've got this snippet:

<h1 lang='en-GB'>Star of <cite>Star Trek</cite> in New
Rôle</h1>
 <cite>American Psycho II</cite> in Production.
 <!-- I'm not making this up, folks. -->

Shatner to play FBI profiler.

and that you've just parsed the token for h1. Calling $stream->get_text(), simply gets
Star of . If, however, the task you're performing is the extraction of the text content of <h1>
elements, then what's called for is:

$stream->get_text('/h1')

This returns Star of Star Trek in New Rôle.

Calling:

$stream->get_text('br')

returns:

"Star of Star Trek in New Rôle\n American Psycho II in
Production.\n \n "

And if you instead called $stream->get_text('schlock') and there is no
<schlock...> in the rest of the document, you will get Star of Star Trek in New
Rôle\n American Psycho II in Production.\n \n Shatner to play FBI
profiler.\n, plus whatever text there is in the rest of the document.

Note that this never introduces whitespace where it's not there in the original. So if you're parsing this:

<table>
<tr><th>Height<th>Weight<th>Shoe Size</tr>
<tr><th>6' 2"<th>180lbs<th>n/a</tr>
</table>

and you've just parsed the table token, if you call:

$stream->get_text('/table')

you'll get back:

"\nHeightWeightShoe Size\n6' 2"180lbsn/a\n"

Not all nontext tokens are ignored by $stream->get_text(). Some tags receive special
treatment: if an img or applet tag is seen, it is treated as if it were a text token; if it has an alt
attribute, its value is used as the content of the virtual text token; otherwise, you get just the uppercase
tag name in brackets: [IMG] or [APPLET]. For further information on altering and expanding this
feature, see perldoc HTML::TokeParser in the documentation for the get_text method, and
possibly even the surprisingly short HTML::TokeParser source code.

If you just want to turn off such special treatment for all tags:

$stream->{'textify'} = {}

This is the only case of the $object->{'thing'} syntax we'll discuss in this book. In no other
case does an object require us to access its internals directly like this, because it has no method for
more normal access. For more information on this particular syntax, see perldoc perlref's
documentation on hash references.

7.5.3 The get_trimmed_text() Method

The syntax for the get_trimmed_text() method is:

$text = $stream->get_trimmed_text();
$text = $stream->get_trimmed_text('foo');
$text = $stream->get_trimmed_text('/bar');

These work exactly like the corresponding $stream->get_text() calls, except any leading
and trailing whitespace is removed and each sequence of whitespace is replaced with a single space.

Returning to our news example:

$html = <<<EOF ;
<h1 lang='en-GB'>Star of <cite>Star Trek</cite> in New
Rôle</h1>
 <cite>American Psycho II</cite> in Production.
 <!-- I'm not making this up, folks. -->

Shatner to play FBI profiler.
EOF
$stream = HTML::TokeParser->new(\$html);
$stream->get_token(); # skip h1

The get_text() method would return Star of (with the trailing space), while the
get_trimmed_text() method would return Star of (no trailing space).

Similarly, $stream->get_text('br') would return:

"Star of Star Trek in New Rôle\n American Psycho II in
Production.\n \n "

whereas $stream->get_trimmed_text ('br') would return:

"Star of Star Trek in New Rôle American Psycho II in
Production."

Notice that the medial newline-space-space became a single space, and the final newline-space-space-
newline-space-space was simply removed.

The caveat that get_text() does not introduce any new whitespace applies also to
get_trimmed_text(). So where, in the last example in get_text(), you would have
gotten \nHeightWeightShoe Size\n6' 2"180lbsn/a\n, get_trimmed_text(
) would return HeightWeightShoe Size 6' 2"180lbsn/a.

7.5.4 The get_tag() Method

The syntax for the get_tag() method is:

$tag_reference = $stream->get_tag();

This returns the next start-tag or end-tag token (throwing out anything else it has to skip to get there),
except while get_token() would return start and end-tags in these formats:

['S', 'hr', {'class','Ginormous'}, ['class'], '<hr
class=Ginormous>']
['E', 'p' , '</P>']

get_tag() instead returns them in this format:

['hr', {'class','Ginormous'}, ['class'], '<hr
class=Ginormous>']
['/p' , '</P>']

That is, the first item has been taken away, and end-tag names start with /.

7.5.4.1 Start-tags

Unless $tag->[0] begins with a /, the tag represents a start-tag:

[$tag, $attribute_hash, $attribute_order_arrayref, $source]

The components of this token are:

$tag

The tag name, in lowercase.

$attribute_hashref

A reference to a hash encoding the attributes of this tag. The (lowercase) attribute names are
the keys of the hash.

$attribute_order_arrayref

A reference to an array of (lowercase) attribute names, in case you need to access elements in
order.

$source

The original HTML for this token.

The first two values are the most interesting ones, for most purposes.

For example, parsing this HTML with $stream->get_tag() :

<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk"
WIDTH=352 height=522>

gives this tag:

[
 'img',
 { 'alt' => 'Shatner in rôle of Kirk',
 'height' => '522', 'src' => 'kirk.jpg', 'width' => '352'
 },
 ['src', 'alt', 'width', 'height'],
 '<IMG SRC="kirk.jpg" alt="Shatner in rôle of Kirk"
WIDTH=352 height=522>'
]

Notice that the tag and attribute names have been lowercased, and the ô entity decoded
within the alt attribute.

7.5.4.2 End-tags

When $tag->[0] does begin with a /, the token represents an end-tag:

["/$tag", $source]

The components of this tag are:

$tag

The lowercase name of the tag being closed, with a leading /.

$source

The original HTML for this token.

Parsing this HTML with $stream->get_tag() :

gives this tag:

['/a', '']

Note that if get_tag() reads to the end of the stream and finds no tag tokens, it will return
undef.

7.5.5 The get_tag() Method with Parameters

Pass a list of tags, to skip through the tokens until a matching tag is found:

$tag_reference = $stream->get_tag('foo', '/bar', 'baz');

This returns the next start-tag or end-tag that matches any of the strings you provide (throwing out
anything it has to skip to get there). Note that the tag name(s) that you provide as parameters must be
in lowercase.

If get_tag() reads to the end of the stream and finds no matching tag tokens, it will return
undef. For example, this code's get_tag() looks for img start-tags:

while (my $img_tag = $stream->get_tag('img')) {
 my $i = $img_tag->[1]; # attributes of this img
tag
 my @lack = grep !exists $i->{$_}, qw(alt height width);
 print "Missing for ", $i->{'src'} || "????", ": @lack\n" if
@lack;
}

7.6 Using Extracted Text

Consider the BBC story-link extractor introduced earlier. Its task was to find links to stories, in either
of these kinds of patterns:

<B CLASS="h3">Bank
 of England mulls rate cut

<A
href="/hi/english/world/middle_east/newsid_1576000/1576113.stm
">
 <B class="h1">Mid-East blow to US anti-terror drive

and then to isolate the URL, absolutize it, and print it. But it ignores the actual link text, which starts
with the next token in the stream. If we want that text, we could get the next token by calling
get_text():

print $stream->get_text(), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";

That prints the text like this:

Bank
of England mulls rate cut

http://news.bbc.co.uk/hi/english/business/newsid_1576000/15762
90.stm

Note that the newline (and any indenting, if there was any) in the source hasn't been filtered out. For
some applications, this makes no difference, but for neatness sake, let's keep headlines to one line
each. Changing get_text() to get_trimmed_text() makes that happen:

print $stream->get_trimmed_text(), "\n ",
 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";
Bank of England mulls rate cut

http://news.bbc.co.uk/hi/english/business/newsid_1576000/15762
90.stm

If the headlines are potentially quite long, we can pass them through Text::Wrap, to wrap them at 72
columns.

There's a trickier problem that occurs often with get_text() or get_trimmed_text().
What if the HTML we're parsing looks like this?

<B CLASS="h3">Shatner & Kunis
win Oscars
 for <cite>American Psycho II</cite> rôles

If we've just parsed the b and the a, the next token in the stream is a text token, Shatner &
Kunis win Oscars for , that's what get_text() returns (get_trimmed_text()
returns the same thing, minus the final space). But we don't want only the first text token in the
headline, we want the whole headline. So instead of defining the headline as "the next text token," we
could define it as "all the text tokens until the next ." So the program changes to:

print $stream->get_trimmed_text('/a'), "\n ",

 URI->new_abs($next[0][2]{'href'}, $docbase), "\n";

That happily prints:

Shatner & Kunis win Oscars for American Psycho II rôles
 http://news.bbc.co.uk/unlikely/2468.stm

Note that the & and ô entity references were resolved to & and ô. If you were using
such a program to spit out something other than plain text (such as XML or RTF), a bare & and/or a
bare high-bit character such as ô might be unacceptable, and might need escaping in some fashion.
Even if you are emitting plain text, the \xA0 (nonbreaking space) or \xAD (soft hyphen) characters
may not be happily interpreted by whatever application you're reading the text with, in which case a
tr/\xA0/ / and tr/\xAD//d are called for. If you're taking the output of get_text() or
get_trimmed_text() and sending it to a system that understands only U.S. ASCII, then
passing the text through a module such as Text::Unidecode might be called for to turn the ô into an o.
This is not really an HTML or HTML::TokeParser matter at all, but is the sort of problem that
commonly arises when extracting content from HTML and putting it into other formats.

Chapter 8. Tokenizing Walkthrough

So far, I've been showing examples of data in a particular format, then presenting code for extracting
the data out of that format, as an illustration of newly introduced HTML::TokeParser methods. But in
real life, you do not proceed tidily from the problem to an immediate and fully formed solution. And
ideally, the task of data extraction is simple: identify patterns surrounding the data you're after and
write a program that matches those patterns and extracts the embedded data.

In practice, however, you write programs bit by bit and in fits and starts, and with data extraction
specifically; this involves a good amount of trying one pattern, finding that its matching is too narrow
or too broad, trying to amend it, possibly having to backtrack and try another pattern, and so on.
Moreover, even equally effective patterns are not equal; some patterns are easier to capture in code
than others, and some patterns are more temporary than others.

In this section, I'll try to make these points by walking though the implementation of a data extraction
task, with all alternatives considered, and even a misstep or two.

8.1 The Problem

As a starting point, consider the task of harvesting a month's worth of listings and corresponding
RealAudio URLs from the web site of the National Public Radio program Fresh Air, at
http://freshair.npr.org. Fresh Air is on NPR stations each weekday, and on every show, different
guests are interviewed. The show's web site lists which guests appear on the show each day and has
links to the RealAudio files for each segment of each show. If your particular weekday schedule
doesn't have you listening to Fresh Air every night or afternoon, you would find it useful to have a
program tell you who had been on in the past month, so you could make a point of listening to the
RealAudio files for the guests you find interesting. Such a data-extraction program could be scheduled
with crontab to run on the first or second day of every month, to harvest the past month's program
data.

8.2 Getting the Data

The first step is to figure out what web pages we need to request to get the data in any form. With the
BBC extractor, it was just a matter of requesting the single page http://news.bbc.co.uk, but here there's
no one page that lists all the data we want. Instead, you can view the program description for each
show, one day at a time. Moreover, the URL for each such page looks like this, which displays the
program info for July 2, 2001:

http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001

It's relatively clear that the format for the bit after the equal sign is the two-digit month, %2F, the two-
digit day, %2F, and the four-digit year. (It's even more clear when you consider that %2F is the /
character encoded, so that the above means 07/02/2001.) Harvesting all the data is a simple
matter of iterating over all the days of the month (or whatever period you want to cover), skipping
weekends (because the program listings are only for weekdays), substituting the proper date numbers
into that URL. Once each page is harvested, the data can be extracted from it.

Already the outlines of the program's design are becoming clear: there needs to be a loop that harvests
the contents of a URL based on each date, then scans the returned content. Scanning the content isn't a

distinct enough task that it has to be part of the same block of code as the code that actual harvests the
URL. Instead, it can simply be a routine that is given a new stream from which it is expected to extract
data. Moreover, that is the hard part of the program, so we might as well do that first (the stuff with
date handling and URL interpolation is much less worrisome, and can be put off until last).

So, to figure out the format of the data we want to harvest, consider a typical program listing page in
its rendered form in a browser. We establish that this is a "typical" page (shown in Figure 8-1) by
flipping through the listings and finding that they all pretty much look like that. (That stands to reason,
as the URL tells us that they're being served dynamically, and all through the same .cfm—Cold
Fusion—file, such that having each day's bit of content poured into a common template is the easy
way for the web site's designers to have implemented this.) So we have good reason to hope that
whatever code we work up to extract successfully from one typical page, would hopefully work for all
of them. The only remarkable difference is in the number of segments per show: here there's two, but
there could be one, or four, or even more. Also, the descriptions can be several paragraphs, sometimes
much shorter.

Figure 8-1. Fresh Air web page

What we want to extract here is the link text that says "Monday - July 2, 2001," "Editor and writer
Walter Kirn," and "Casting director and actress Joanna Merlin," and for each we also want the link
URL as an absolute URL. We don't want the "Listen to" part, since it'd be pointlessly repetitive to
have a whole month's worth of listings where every line starts with "Listen to".

8.3 Inspecting the HTML

The first step to getting some code working is to save a file locally. This is so you can look at the
source in an editor, and secondly so you can initially test your data extractor on that local file. It may
take a good deal of hit-and-miss before you get it working right, and there's no point in making each
trial run go and get the same page across the network, especially to Fresh Air's occasionally quite busy
server. Saving the above URL as fresh1.html gives us a 12K file. While there's only about 1K of text
shown on the screen, the other 11K are mostly whitespace that indents the HTML, some JavaScript,
plus all the table code needed to make the navigation bar on the left and the search form on the right.
We can completely ignore all that code and just try to figure out how to extract the "Listen..." links.
Sifting through the HTML source, we see that those links are represented with this code (note that
most lines begin with at least two spaces):

...

 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#FFCC00"
SIZE="2">
 Listen to Monday - July 2, 2001

...

 Liste
n to
 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="3">
 Editor and writer Walter Kirn

 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="2">
 <BLOCKQUOTE>Editor and writer <A

HREF="http://freshair.npr.org/guestInfoFA.cfm?name=walterkirn"
>Walter
 Kirn's new novel <I>Up in the Air</I> (Doubleday) is
about
...
 </BLOCKQUOTE>

 Liste
n to
 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="3">
 Casting director and actress Joanna Merlin

 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="2">
 <BLOCKQUOTE>Casting director and actress <A

HREF="http://freshair.npr.org/guestInfoFA.cfm?name=joannamerli
n">Joanna
 Merlin has written a new guide for actors,
<I>Auditioning: An
...
 </BLOCKQUOTE>

...

8.4 First Code

Because we want links, let's get links, like this:

use strict;
use HTML::TokeParser;
parse_fresh_stream(
 HTML::TokeParser->new('fresh1.html') || die $!
);

sub parse_fresh_stream {
 my($stream) = @_;
 while(my $a_tag = $stream->get_tag('a')) {
 my $text = $stream->get_trimmed_text('/a');
 printf "%s\n %s\n", $text, $a_tag->[1]{'href'} || '??';
 }
 return;
}

But this outputs:

Fresh Air Online
 index.cfm
Listen to Current Show
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
[...]
NPR Online
 http://www.npr.org
FreshAir@whyy.org
 mailto:freshair@whyy.org
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram

Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Walter Kirn
 http://freshair.npr.org/guestInfoFA.cfm?name=walterkirn
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram
Joanna Merlin
 http://freshair.npr.org/guestInfoFA.cfm?name=joannamerlin
Previous show
 dayFA.cfm?todayDate=06%2F29%2F2001
Next show
 dayFA.cfm?todayDate=07%2F03%2F2001

We got what we wanted (those three "Listen to" links are in there), but it's buried in other stuff. You
see, the navigation bar on the left does consist of image links, whose ALT content shows up when we
call get_trimmed_text() or get_text(). We also get the mailto: link from the
bottom of the navigation bar, the bio links for the guests from the paragraphs describing each segment,
and the "Previous Show" and "Next Show" links.

8.5 Narrowing In

Now, we could try excluding every kind of thing we know we don't want. We could exclude the
mailto: link by excluding all URLs that start with mailto:; we could exclude the guest bio URLs
by excluding URLs that contain guestinfo; we could exclude the "Previous" and "Next" links by
ignoring any URLs with dayFA in them; and we could think of a way to exclude the image URLs.
However, tomorrow the people at Fresh Air might add this to their general template:

<img alt="Buy the Terry Gross mug"
 src="/mug.jpg" width=450 weight=90>

Because that isn't explicitly excluded, it would make its way through and appear as a segment link in
every program listed.

It is a valid approach to come up with criteria for the kinds of things we don't want to see, but it's
usually easier to come up with criteria to capture what we do want to see. So this is what we'll do.

We could characterize the links we're after in several ways:

1. These links all contain a <font...> ... sequence and a ...
 sequence.

2. They all have an <a ...> tag with an href attribute pointing to a URL.
3. The URL they point to looks like http://www.npr.org/ramfiles/fa/20010702.fa.ram.
4. Notably, the URL's scheme is http, it's on the server www.npr.org, its path includes

ramfiles, and it ends in .ram.
5. The (trimmed) link text up to /a always begins with Listen to .

Now, of these, the first criterion is most reminiscent of the sort of things we did earlier with the BBC
news extractor. But in this case, it's actually sort of a bother, because we can't specify that the next
token after the <a ...> start-tag is a <font...> tag.

If, by this first criterion, we simply mean that calling $x->get_tag('/a', 'font', 'b')
should give you <font...> or before you hit , well, this is true. But in either case,
you'll have skipped over all the tokens between the current point in the stream and the next tag you
find, and once you've skipped them, you can't get them back. In this case, we can get away with
throwing out the content of <a ...>... sequences that don't meet this one criterion, but in
many situations you run into, you won't have that luxury. Moreover, in jumping from the <a ...>
start-tag to the first <font...> tag, we may be jumping over text that we want but will never be
able to get.

We could try implementing this all with the same approach we used with the BBC extractor in
Chapter 7, where we cook up several patterns (such as an <a href...> start-tag, a text token
Listen to , a <font...> start-tag, some whitespace, and a start-tag) and base our pattern
matcher on get_token() so we can always call unget_token() on tokens that don't
match the pattern. This is feasible, but it's sounding like the hardest of the criteria to formalize, at least
under HTML::TokeParser. (But testing whether a tag sequence contains another is easy with
HTML::TreeBuilder, as we see in later chapters.) So we'll try to make do without this one criterion
and consider it a last resort.

Winding irrevocably past things is a problem not just with get_tag(). It's also a problem with
get_text() and get_trimmed_text(). Once you use any of these methods to skip past
tags and/or comments, they're gone for good. Unless you did something particularly perverse, such as
read a huge chunk of the stream with get_token() and then stuffed it back in with
unget_token() while still keeping a copy around. If you're even contemplating something like
that, it's a definite sign that your program is outgrowing what you can do with HTML::TokeParser,
and you should either write a new searcher method that's like get_text() but that can restore
tokens to the buffer, or more likely move on to a parsing model based on HTML::TreeBuilder.

The next criteria (numbers 3 and 4 in the list above) are easy to formalize. These involve
characteristics of the URL. We simply add a line to our while loop, like so:

while(my $a_tag = $stream->get_tag('a')) {
 my $url = $a_tag->[1]{'href'} || next;
 next unless $url =~ m{^http:}s and $url =~ m/www\.npr\.org/i
 and $url =~ m{/ramfiles/} and $url =~ m/\.ram$/;
 # (There's many other ways of doing the above.)
 my $text = $stream->get_trimmed_text('/a');
 printf "%s\n %s\n", $text, $url;
}

But this raises a point on which many programmers will, legitimately, diverge. Currently, we can say
"it's interesting only if the URL ends in .ram," like so:

next unless $url =~ m/\.ram$/;

It works! But what if, tomorrow, some code like the following is added to the normal template?

Happy Holidays
 from Terry Gross!

<!-- just a short RA file of Terry saying "Happy NATO Day!" --
>

We'll be annoyed we didn't make our link extractor check $url =~ m/www\.npr\.org/i and
$url =~ m{/ramfiles/}. On the other hand, if we do check those additional facts about the
URL, and tomorrow all the .ram files are moved off of www.npr.org and onto archive.npr.org, or onto
terrygross.com or whatever, then it'll look like there were no links for this program! Then we'll be
annoyed that we did make our link extractor check those additional things about the URL. Moreover,
tomorrow NPR could switch to a better audio format than RealAudio, and all the .ram files could turn
into something else, such that even m/\.ram$/ is no longer true. It could even be something served
across a protocol other than HTTP! In other words, no part of the URL is reliably stable. On one hand,
National Public Radio is not normally characterized by lavish budgets for web design (and redesign,
and re-redesign), so you can expect some measure of stability. But on the other hand, you never know!

8.6 Rewrite for Features

My core approach in these cases is to pick some set of assumptions and stick with it, but also to
assume that they will fail. So I write the code so that when it does fail, the point of failure will be easy
to isolate. I do this is with debug levels, also called trace levels. Consider this expanded version of our
code:

use strict;
use constant DEBUG => 0;

use HTML::TokeParser;
parse_fresh_stream(
 HTML::TokeParser->new('fresh1.html') || die($!),
 'http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001'
);

sub parse_fresh_stream {
 use URI;
 my($stream, $base_url) = @_;
 DEBUG and print "About to parse stream with base
$base_url\n";

 while(my $a_tag = $stream->get_tag('a')) {
 DEBUG > 1 and printf "Considering {%s}\n", $a_tag->[3];
 my $url = URI->new_abs(($a_tag->[1]{'href'} || next),
$base_url);
 unless($url->scheme eq 'http') {
 DEBUG > 1 and print "Scheme is no good in $url\n";
 next;
 }
 unless($url->host =~ m/www\.npr\.org/) {
 DEBUG > 1 and print "Host is no good in $url\n";
 next;
 }
 unless($url->path =~ m{/ramfiles/.*\.ram$}) {

 DEBUG > 1 and print "Path is no good in $url\n";
 next;
 }
 DEBUG > 1 and print "IT'S GOOD!\n";
 my $text = $stream->get_trimmed_text('/a') || "??";
 printf "%s\n %s\n", $text, $url;
 }
 DEBUG and print "End of stream\n";
 return;
}

Among the notable changes here, I'm making a URI object for each URL I'm scrutinizing, and to
make a new absolute URI object out of each potentially relative URL, I have to pass the base URL as
a parameter to the parse_fresh_stream() function. Once I do that, I get to isolate parts of
URLs the proper way, using URI methods such as host() and path(), instead of by applying
regexp matches to the bare URL.

8.6.1 Debuggability

The greatest change is the introduction of all the links with "DEBUG" in them. Because the DEBUG
constant is declared with value 0, all the tests of whether DEBUG is nonzero are obviously always
false, and so all these lines are never run; in fact, the Perl compiler removes them from the parse tree
of this program, so they're discarded the moment they're parsed. (Incidentally, there's nothing magic
about the name "DEBUG"; you can call it "TRACE" or "Talkytalky" or "_mumbles" or whatever you
want. However, using all caps is a matter of convention.) So, with a DEBUG value of 0, when you run
this program, it simply prints this:

Listen to Current Show
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

(That first link is superfluous, but we'll deal with that in a bit; otherwise, it all works okay.) So these
DEBUG lines do nothing. And when we deploy the above program with some code that harvests the
pages instead of working from the local test page, the DEBUG lines will continue to do nothing. But
suppose that, months later, the program just stops working. That is, it runs, but prints nothing, and we
don't know why. Did NPR change the Fresh Air site so much that the old program listings' URLs are
no longer serve any content? Or has some part of the format changed? If we just change DEBUG =>
0 to DEBUG => 1 and rerun the program, we can see that parse_fresh_stream() is
definitely being called on a stream from an HTML page, because we see the messages from the print
statements in that routine:

About to parse stream with base
http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001
End of stream

Change the DEBUG level to 2, and we get more detailed output:

About to parse stream with base
http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001
Considering {}
Host is no good in http://freshair.npr.org/index.cfm
Considering {}
Path is no good in
http://www.npr.org/ramfiles/fa/20011011.fa.prok
Considering {}
[...]
Considering {}
Path is no good in
http://www.npr.org/ramfiles/fa/20010702.fa.prok
Considering {}
Path is no good in
http://www.npr.org/ramfiles/fa/20010702.fa.01.prok
Considering {<A
HREF="http://freshair.npr.org/guestInfoFA.cfm?name=walterkirn"
>}
Host is no good in
http://freshair.npr.org/guestInfoFA.cfm?name=walterkirn
Considering {}
Path is no good in
http://www.npr.org/ramfiles/fa/20010702.fa.02.prok
Considering {<A
HREF="http://freshair.npr.org/guestInfoFA.cfm?name=joannamerli
n">}
Host is no good in
http://freshair.npr.org/guestInfoFA.cfm?name=joannamerlin
Considering {}
Host is no good in
http://freshair.npr.org/dayFA.cfm?todayDate=06%2F29%2F2001
Considering {}
Host is no good in
http://freshair.npr.org/dayFA.cfm?todayDate=07%2F03%2F2001
End of stream

Our parse_fresh_stream() routine is still correctly rejecting index.cfm and the like, for
having a "no good" host (i.e., not www.npr.org). And we can see that it's happening on those
"ramfiles" links, and it's not rejecting their host, because they are on www.npr.org. But it rejects their
paths. When we look back at the code that triggers rejection based on the path, it kicks in only when
the path fails to match m{/ramfiles/.*\.ram$}. Why don't our ramfiles paths match that
regexp anymore? Ah ha, because they don't end in .ram anymore; they end in .prok, some new audio
format that NPR has switched to! This is evident at the end of the lines beginning "Path is no good."
Change our regexp to accept .prok, rerun the program, and go about our business. Similarly, if the

audio files moved to a different server, we'd be alerted to their host being "no good" now, and we
could adjust the regexp that checks that.

We had to make some fragile assumptions to tell interesting links apart from uninteresting ones, but
having all these DEBUG statements means that when the assumptions no longer hold, we can quickly
isolate the problem.

8.6.2 Images and Applets

Speaking of assumptions, what about the fact that (back to our pre-.prok local test file and setting
DEBUG back to 0) we get an extra link at the start of the output here?

Listen to Current Show
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

If we go to our browser and use the "Find in Page" function to see where "Listen to Current Show"
appears in the rendered page, we'll probably find no match. So where's it coming from? Try the same
search on the source, and you'll see:

 <IMG SRC="images/listen.gif" ALT="Listen to Current Show"
 WIDTH="124" HEIGHT="47" BORDER="0" HSPACE="0" VSPACE="0">

Recall that get_text() and get_text_trimmed() give special treatment to img and
applet elements; they treat them as virtual text tags with contents from their alt values (or in the
absence of any alt value, the strings [IMG] or [APPLET]). That might be a useful feature
normally, but it's bothersome now. So we turn it off by adding this line just before our while loop
starts reading from the stream:

$stream->{'textify'} = {};

We know that's the line to use partly because I mentioned it as an aside much earlier, and partly
because it's in the HTML::TokeParser manpage (where you can also read about how to do things with
the textify feature other than just turn it off). With that change made, our program prints this:

??
 http://www.npr.org/ramfiles/fa/20011011.fa.ram
Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin

 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

That ?? is there because when the first link had no link text (and we're no longer counting alt text),
it caused get_trimmed_text() to return an empty string. That is a false value in Perl, so it
causes the fallthrough to ?? here:

my $text = $stream->get_trimmed_text('/a') || "??";

If we want to explicitly skip things with no link text, we change that to:

my $text = $stream->get_trimmed_text('/a');
unless(length $text) {
 DEBUG > 1 and print "Skipping link with no link-text\n";
 next;
}

That makes the program give this output, as we wanted it:

Listen to Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Listen to Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Listen to Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

8.6.3 Link Text

Now that everything else is working, remember that we didn't want all this "Listen to" stuff starting
every single link. Moreover, remember that the presence of a "Listen to" at the start of the link text
was one of our prospective criteria for whether it's an interesting link. We didn't implement that, but
we can implement it now:

unless($text =~ s/^Listen to //) {
 DEBUG > 1 and print "Odd, \"$text\" doesn't start with
\"Listen to\"...\n";
 next;
}
Monday - July 2, 2001
 http://www.npr.org/ramfiles/fa/20010702.fa.ram
Editor and writer Walter Kirn
 http://www.npr.org/ramfiles/fa/20010702.fa.01.ram
Casting director and actress Joanna Merlin
 http://www.npr.org/ramfiles/fa/20010702.fa.02.ram

In other words, unless the link next starts with a "Listen to" that we can strip off, this link is rejected.
And incidentally, you might notice that with all these little changes we've made, our program now
works perfectly!

8.6.4 Live Data

All it needs to actually pull data from the Fresh Air web site, is to comment out the code that calls the
local test file and substitute some simple code to get the data for a block of days. Here's is the whole
program source, with those changes and additions:

use strict;
use constant DEBUG => 0;
use HTML::TokeParser;

#parse_fresh_stream(
HTML::TokeParser->new('fresh1.html') || die($!),

'http://freshair.npr.org/dayFA.cfm?todayDate=07%2F02%2F2001'
#);

scan_last_month();

sub scan_last_month {
 use LWP::UserAgent;
 my $browser = LWP::UserAgent->new();
 foreach my $date_mdy (weekdays_last_month()) {
 my $url = sprintf(

'http://freshair.npr.org/dayFA.cfm?todayDate=%02d%%2f%02d%%2f%
04d',
 @$date_mdy
);
 DEBUG and print "Getting @$date_mdy URL $url\n";
 sleep 3; # Don't hammer the NPR server!
 my $response = $browser->get($url);
 unless($response->is_success) {
 print "Error getting $url: ", $response->status_line,
"\n";
 next;
 }
 my $stream = HTML::TokeParser->new($response->content_ref)
 || die "What, couldn't make a stream?!";
 parse_fresh_stream($stream, $response->base);
 }
}

sub weekdays_last_month { # Boring date handling. Feel free to
skip.
 my($now) = time;
 my $this_month = (gmtime $now)[4];
 my(@out, $last_month, $that_month);

 do { # Get to end of last month.
 $now -= (24 * 60 * 60); # go back a day
 $that_month = (gmtime $now)[4];

 } while($that_month == $this_month);
 $last_month = $that_month;

 do { # Go backwards thru last month
 my(@then) = (gmtime $now);
 unshift @out, [$then[4] + 1 , $then[3], $then[5] + 1900] #
m,d,yyyy
 unless $then[6] == 0 or $then[6] == 6;
 $now -= (24 * 60 * 60); # go back one day
 $that_month = (gmtime $now)[4];
 } while($that_month == $last_month);
 return @out;
}

Unchanged since you last saw it:
sub parse_fresh_stream {
 use URI;
 my($stream, $base_url) = @_;
 DEBUG and print "About to parse stream with base
$base_url\n";

 while(my $a_tag = $stream->get_tag('a')) {
 DEBUG > 1 and printf "Considering {%s}\n", $a_tag->[3];
 my $url = URI->new_abs(($a_tag->[1]{'href'} || next),
$base_url);
 unless($url->scheme eq 'http') {
 DEBUG > 1 and print "Scheme is no good in $url\n";
 next;
 }
 unless($url->host =~ m/www\.npr\.org/) {
 DEBUG > 1 and print "Host is no good in $url\n";
 next;
 }
 unless($url->path =~ m{/ramfiles/.*\.ram$}) {
 DEBUG > 1 and print "Path is no good in $url\n";
 next;
 }
 DEBUG > 1 and print "IT'S GOOD!\n";
 my $text = $stream->get_trimmed_text('/a') || "??";
 printf "%s\n %s\n", $text, $url;
 }
 DEBUG and print "End of stream\n";
 return;
}

8.7 Alternatives

Now, with the sort of 20/20 hindsight that is always in abundance in such cases, we can see that there
were other ways it could have been done. For example, instead of using the various tricks to keep the
first image-ALT link from printing, we could simply have kept a count of the good links seen so far in
the current stream and ignored the first one. Our actual solution is more proper in this case, but
sometimes counting items is the best or only way to get a problem solved.

More importantly, we could have done without all the code that tests the link URL and used one
regexp to implement our last criterion, i.e., that the link text begin with "Listen to". But, as with our
earlier consideration of how much of the URL to check, it comes down to the question: do you want
something that's more careful (i.e., enforcing more assumptions on the input data, and so more prone
to reject appropriate links in the future) or more forgiving (i.e., enforcing fewer assumptions, but more
likely to match inappropriate links in the future)?

The answer depends on how concise you want the code to be, how much time you want to spend
thinking up assumptions, and, most importantly, what happens if it breaks. If I've crontabbed this
program to harvest Fresh Air listings every month and mail me the results, if it breaks, I'll get some
sort of anomalous output mailed to me (whether with too few links, or too many) and it's no big deal
because, working or not, it's just so I can listen to interesting radio programs. But your data extraction
program may instead serve many people who will be greatly inconvenienced if it stops working
properly. You have to decide on a case-by-case basis whether your program should be more likely to
clam up and miss interesting data in new formats, or pass through new kinds of data despite the risk
that they might be irrelevant or just plain wrong.

Chapter 9. HTML Processing with Trees

Treating HTML as a stream of tokens is an imperfect solution to the problem of extracting
information from HTML. In particular, the token model obscures the hierarchical nature of markup.
Nested structures such as lists within lists or tables within tables are difficult to process as just tokens.
Such structures are best represented as trees, and the HTML::Element class does just this.

This chapter teaches you how to use the HTML::TreeBuilder module to construct trees from HTML,
and how to process those trees to extract information. Chapter 10 shows how to modify HTML using
trees.

9.1 Introduction to Trees

The HTML in Example 9-1 can be represented by the tree in Figure 9-1.

Example 9-1. Simple HTML

 Ice cream.
 Whipped cream.
 Hot apple pie
(mmm pie)

Figure 9-1. HTML tree

In the language of trees, each part of the tree (such as html, li, Ice cream., and br) is a node.
There are two kinds of nodes in an HTML tree: text nodes,which are strings with no tags, and
elements, which symbolize not mere strings, but things that can have attributes (such as
align=left), and which generally came from an open tag (such as), and were possibly
closed by an end-tag (such as).

When several nodes are contained by another, as the li elements are contained by the ul element,
the contained ones are called children. Children of the same element are called siblings. For example,

head and body are siblings, as they are both children of the html element. Text nodes can't have
children; only elements can have children.

Example 9-1 shows the difference between a tag and an element. A tag is a piece of markup source,
such as the string . An element is a feature of the tree that you get by parsing the source that
contains tags. The relationship between the two isn't always easy to figure out by just looking at the
source, because HTML lets you omit closing tags (such as) and in some cases omit entire
groups of tags (such as <html><head></head><body>...</body></html>, as were
omitted above but showed up in the tree anyway). This is unlike XML, where there are exactly as
many elements in the tree as there are <foo>...</foo> tag pairs in the source.

Trees let you work with elements and ignore the way the HTML was marked up. If you're processing
the tree shown in Figure 9-1, you don't need to worry about whether the tag was or was not
present.

In LWP, each element in a tree is an HTML::Element object. The HTML::TreeBuilder module parses
HTML and constructs a tree for you. The parsing options in a given HTML::TreeBuilder object
control the nature of the final tree (for example, whether comments are ignored or represented in the
tree). Once you have a tree, you can call methods on it that search for bits of content and emit parts of
it as HTML or text. In the next chapter, we even see how to move nodes around within the tree, and
from tree to tree.

9.2 HTML::TreeBuilder

There are five steps to an HTML::TreeBuilder program:

1. Create the HTML::TreeBuilder object.
2. Set the parse options.
3. Parse the HTML.
4. Process it according to the needs of your problem.
5. Delete the HTML::TreeBuilder object.

Example 9-2 is a simple HTML::TreeBuilder program.

Example 9-2. Simple HTML::TreeBuilder program

#!/usr/bin/perl -w
use strict;
use HTML::TreeBuilder 3; # make sure our version isn't
ancient
my $root = HTML::TreeBuilder->new;
$root->parse(# parse a string...
q{

 Ice cream.
 Whipped cream.
 Hot apple pie
(mmm pie)

});
$root->eof(); # done parsing for this tree

$root->dump; # print() a representation of the tree
$root->delete; # erase this tree because we're done with it

Four of the five steps are shown here. The HTML::TreeBuilder class's new() constructor creates a
new object. We don't set parse options, preferring instead to use the defaults. The parse()
method parses HTML from a string. It's designed to let you supply HTML in chunks, so you use the
eof() method to tell the parser when there's no more HTML. The dump() method is our
processing here, printing a string form of the tree (the output is given in Example 9-3). And finally we
delete() the tree to free the memory it used.

Example 9-3. Output of Example 9-2

<html> @0 (IMPLICIT)
 <head> @0.0 (IMPLICIT)
 <body> @0.1 (IMPLICIT)
 @0.1.0
 @0.1.0.0
 "Ice cream."
 @0.1.0.1
 "Whipped cream. "
 @0.1.0.2
 "Hot apple pie "

 @0.1.0.2.1
 "(mmm pie)"

Each line in the dump represents either an element or text. Each element is identified by a dotted
sequence of numbers (e.g., 0.1.0.2). This sequence identifies the position of the element in the tree
(2nd child of the 0th child of the 1st child of the 0th child of the root of the tree). The dump also
identifies some nodes as (IMPLICIT), meaning they weren't present in the HTML fragment but
have been inferred to make a valid document parse tree.

9.2.1 Constructors

To create a new empty tree, use the new() method:

$root = HTML::TreeBuilder->new();

To create a new tree and parse the HTML in one go, pass one or more strings to the
new_from_content() method:

$root = HTML::TreeBuilder->new_from_content([string, ...]);

To create a new HTML::TreeBuilder object and parse HTML from a file, pass the filename or a
filehandle to the new_from_file() method:

$root = HTML::TreeBuilder->new_from_file(filename);
$root = HTML::TreeBuilder->new_from_file(filehandle);

If you use new_from_file() or new_from_content(), the parse is carried out with
the default parsing options. To parse with any nondefault options, you must use the new()
constructor and call parse_file() or parse().

9.2.2 Parse Options

Set options for the parse by calling methods on the HTML::TreeBuilder object. These methods return
the old value for the option and set the value if passed a parameter. For example:

$comments = $root->strict_comment();
print "Strict comment processing is ";
print $comments ? "on\n" : "off\n";
$root->strict_comments(0); # disable

Some options affect the way the HTML standard is ignored or obeyed, while others affect the internal
behavior of the parser. The full list of parser options follows.

$root->strict_comments([boolean]);

The HTML standard says that a comment is terminated by an even number of --s between
the opening < and the closing >, and there must be nothing but whitespace between even and
odd --s. That part of the HTML standard is little known, little understood, and little obeyed.
So most browsers simply accept any --> as the end of a comment. If enabled via a true
value, this option makes the HTML::TreeBuilder recognize only those comments that obey
the HTML standard. By default, this option is off, so that HTML::TreeBuilder will parse
comments as normal browsers do.

$root->strict_names([boolean]);

Some HTML has unquoted attribute values that include spaces, e.g., <img alt=big
dog! src="dog.jpg">. If this option is enabled, that tag would be reported as text,
because it doesn't obey the standard (dog! is not a valid attribute name). If the option is
disabled, as it is by default, source such as this is parsed as a tag, with a Boolean attribute
called dog! set.

$root->implicit_tags([boolean]);

Enabled by default, this option makes the parser create nodes for missing start- or end-tags. If
disabled, the parse tree simply reflects the input text, which is rarely useful.

$root->implicit_body_p_tag([boolean]);

This option controls what happens to text or phrasal tags (such as <i>...</i>) that are
directly in a <body>, without a containing <p>. By default, the text or phrasal tag nodes
are children of the <body>. If enabled, an implicit <p> is created to contain the text or
phrasal tags.

$root->ignore_unknown([boolean]);

By default, unknown tags, such as <footer>, are ignored. Enable this to create nodes in
the parse tree for unknown tags.

$root->ignore_text([boolean]);

By default, text in elements appears in the parse tree. Enable this option to create parse trees
without the text from the document.

$root->ignore_ignorable_whitespace([boolean]);

Whitespace between most tags is ignorable, and multiple whitespace characters are collapsed
to one. If you want to preserve the whitespace present in the original HTML, enable this
option.

9.2.3 Parsing

There are two ways of parsing HTML: from a file or from strings.

Pass the parse_file() method a filename or filehandle to parse the HTML in that file:

$success = $root->parse_file(filename);
$success = $root->parse_file(filehandle);

For example, to parse HTML from STDIN:

$root->parse_file(*STDIN) or die "Can't parse STDIN";

The parse_file() method returns the HTML::TreeBuilder object if successful or undef if
an error occurred.

The parse() method takes a chunk of HTML and parses it. Call parse() on each chunk,
then call the eof() method when there's no more HTML to come.

$success = $root->parse(chunk);
$success = $root->eof();

This method is designed for situations where you are acquiring your HTML one chunk at a time. It's
also useful when you're extracting HTML from a larger file and can't simply parse the entire file with
parse_file(). In many cases, you could use new_from_content(), but recall that
new_from_content() doesn't give you an opportunity to set nondefault parsing options.

9.2.4 Cleanup

The delete() method frees the tree and its elements, giving the memory it used back to Perl:

$root->delete();

Use this method in persistent environments such as mod_perl or when your program will parse a lot of
HTML files. It's not enough to simply have $root be a private variable that goes out of scope, or to
assign a new value to $root. Perl's current memory-management system fails on the kinds of data
structures that HTML::Element uses.

9.3 Processing

Once you have parsed some HTML, you need to process it. Exactly what you do will depend on the
nature of your problem. Two common models are extracting information and producing a transformed
version of the HTML (for example, to remove banner advertisements).

Whether extracting or transforming, you'll probably want to find the bits of the document you're
interested in. They might be all headings, all bold italic regions, or all paragraphs with
class="blinking". HTML::Element provides several functions for searching the tree.

9.3.1 Methods for Searching the Tree

In scalar context, these methods return the first node that satisfies the criteria. In list context, all such
nodes are returned. The methods can be called on the root of the tree or any node in it.

$node->find_by_tag_name(tag [, ...])

Return node(s) for tags of the names listed. For example, to find all h1 and h2 nodes:

@headings = $root->find_by_tag_name('h1', 'h2');
$node->find_by_attribute(attribute, value)

Returns the node(s) with the given attribute set to the given value. For example, to find all
nodes with class="blinking":

@blinkers = $root->find_by_attribute("class",
"blinking");

$node->look_down(...)
$node->look_up(...)

These two methods search $node and its children (and children's children, and so on) in the
case of look_down, or its parent (and the parent's parent, and so on) in the case of
look_up, looking for nodes that match whatever criteria you specify. The parameters are
either attribute => value pairs (where the special attribute _tag represents the tag
name), or a subroutine that is passed a current node and returns true to indicate that this node
is of interest.

For example, to find all h2 nodes in the tree with class="blinking":

@blinkers = $root->look_down(_tag => 'h2', class =>
'blinking');

We'll discuss look_down in greater detail later.

9.3.2 Attributes of a Node

Four methods give access to the basic information in a node:

$node->tag()

The tag name string of this element. Example values: html, img, blockquote. Note
that this is always lowercase.

$node->parent()

This returns the node object that is the parent of this node. If $node is the root of the tree,
$node->parent() will return undef.

$node->content_list()

This returns the (potentially empty) list of nodes that are this node's children.

$node->attr(attributename)

This returns the value of the HTML attributename attribute for this element. If there is
no such attribute for this element, this returns undef. For example: if $node is parsed
from , then $node->attr("src")
will return the string x1.jpg.

Four more methods convert a tree or part of a tree into another format, such as HTML or text.

$node->as_HTML([entities [, indent_char [, optional_end_tags]]]);

Returns a string consisting of the node and its children as HTML. The entities
parameter is a string containing characters that should be entity escaped (if empty, all
potentially unsafe characters are encoded as entities; if you pass just <>&, just those
characters will get encoded—a bare minimum for valid HTML). The indent_char
parameter is a string used for indenting the HTML. The optional_end_tags
parameter is a reference to a hash that has a true value for every key that is the name of a tag
whose closing tag is optional. The most common value for this parameter is {} to force all
tags to be closed:

$html = $node->as_HTML("", "", {});

For example, this will emit tags for any li nodes under $node, even though
 tags are technically optional, according to the HTML specification.

Using $node->as_HTML() with no parameters should be fine for most purposes.

$node->as_text()

Returns a string consisting of all the text nodes from this element and its children.

$node->starttag([entities])

Returns the HTML for the start-tag for this node. The entities parameter is a string of
characters to entity escape, as in the as_HTML() method; you can omit this. For example,
if this node came from parsing <TD class=loud>Hooboy</TD>, then $node-
>starttag() returns <td class="loud">. Note that the original source text is
not reproduced exactly, because insignificant differences, such as the capitalization of the tag
name or attribute names, will have been discarded during parsing.

$node->endtag()

Returns the HTML for the end-tag for this node. For example, if this node came from parsing
<TD class=loud>Hooboy</TD>, then $node->endtag() returns </td>.

These methods are useful once you've found the desired content. Example 9-4 prints all the bold italic
text in a document.

Example 9-4. Bold-italic headline printer

#!/usr/bin/perl -w

use HTML::TreeBuilder;
use strict;

my $root = HTML::TreeBuilder->new_from_content(<<"EOHTML");
<i>Shatner wins Award!</i>
Today in Hollywood ...
<i>End of World Predicted!</i>
Today in Washington ...
EOHTML
$root->eof();

print contents of <i>...</i>
my @bolds = $root->find_by_tag_name('b');
foreach my $node (@bolds) {
 my @kids = $node->content_list();
 if (@kids and ref $kids[0] and $kids[0]->tag() eq 'i') {
 print $kids[0]->as_text(), "\n";
 }
}

Example 9-4 is fairly straightforward. Having parsed the string into a new tree, we get a list of all the
bold nodes. Some of these will be the headlines we want, while others will simply be bolded text. In
this case, we can identify headlines by checking that the node that it contains represents
<i>...</i>. If it is an italic node, we print its text content.

The only complicated part of Example 9-4 is the test to see whether it's an interesting node. This test
has three parts:

@kids

True if there are children of this node. An empty would fail this test.

ref $kids[0]

True if the first child of this node is an element. This is false in cases such as
Washington, where the first (and here, only) child is text. If we fail to check
this, the next expression, $kids[0]->tag(), would produce an error when
$kids[0] isn't an object value.

$kids[0]->tag() eq 'i'

True if the first child of this node is an i element. This would weed out anything like
, where $kids[0]->tag() would
return img, or Yes, Shatner!, where
$kids[0]->tag() would return strong.

9.3.3 Traversing

For many tasks, you can use the built-in search functions. Sometimes, though, you'd like to visit every
node of the tree. You have two choices: you can use the existing traverse() function or write
your own using either recursion or your own stack.

The act of visiting every node in a tree is called a traversal. Traversals can either be preorder (where
you process the current node before processing its children) or postorder (where you process the
current node after processing its children). The traverse() method lets you both:

$node->traverse(callbacks [, ignore_text]);

The traverse() method calls a callback before processing the children and again afterward. If
the callbacks parameter is a single function reference, the same function is called before and
after processing the children. If the callbacks parameter is an array reference, the first element is
a reference to a function called before the children are processed, and the second element is similarly
called after the children are processed, unless this node is a text segment or an element that is
prototypically empty, such as br or hr. (This last quirk of the traverse() method is one of the
reasons that I discourage its use.)

Callbacks get called with three values:

sub callback
 my ($node, $startflag, $depth,
 $parent, $my_index) = @_;
 # ...
}

The current node is the first parameter. The next is a Boolean value indicating whether we're being
called before (true) or after (false) the children, and the third is a number indicating how deep into the

traversal we are. The fourth and fifth parameters are supplied only for text elements: the parent node
object and the index of the current node in its parent's list of children.

A callback can return any of the following values:

HTML::Element::OK (or any true value)

Continue traversing.

HTML::Element::PRUNE (or any false value)

Do not go into the children. The postorder callback is not called. (Ignored if returned by a
postorder callback.)

HTML::Element::ABORT

Abort the traversal immediately.

HTML::Element::PRUNE_UP

Do not go into this node's children or into its parent node.

HTML::Element::PRUNE_SOFTLY

Do not go into the children, but do call this node's postorder callback.

For example, to extract text from a node but not go into table elements:

my $text;
sub text_no_tables {
 return if ref $_[0] && $_[0]->tag eq 'table';
 $text .= $_[0] unless ref $_[0]; # only append text nodex
 return 1; # all is copacetic
}

$root->traverse([\&text_no_tables]);

This prevents descent into the contents of tables, while accumulating the text nodes in $text.

It can be hard to think in terms of callbacks, though, and the multiplicity of return values and calling
parameters you get with traverse() makes for confusing code, as you will likely note when
you come across its use in existing programs that use HTML::TreeBuilder.

Instead, it's usually easier and clearer to simply write your own recursive subroutine, like this one:

my $text = '';
sub scan_for_non_table_text {
 my $element = $_[0];
 return if $element->tag eq 'table'; # prune!

 foreach my $child ($element->content_list) {
 if (ref $child) { # it's an element
 scan_for_non_table_text($child); # recurse!
 } else { # it's a text node!
 $text .= $child;
 }
 }
 return;
}
scan_for_non_table_text($root);

Alternatively, implement it using a stack, doing the same work:

my $text = '';
my @stack = ($root); # where to start

while (@stack) {
 my $node = shift @stack;
 next if ref $node and $node->tag eq 'table'; # skip tables
 if (ref $node) {
 unshift @stack, $node->content_list; # add children
 } else {
 $text .= $node; # add text
 }
}

The while() loop version can be faster than the recursive version, but at the cost of being much
less clear to people who are unfamiliar with this technique. If speed is a concern, you should always
benchmark the two versions to make sure you really need the speedup and that the while() loop
version actually delivers. The speed difference is sometimes insignificant. The manual page
perldoc HTML::Element::traverse discusses writing more complex traverser routines,
in the rare cases where you might find this necessary.

9.4 Example: BBC News

In Chapter 7, we considered the task of extracting the headline link URLs from the BBC News main
page, and we implemented it in terms of HTML::TokeParser. Here, we'll consider the same problem
from the perspective of HTML::TreeBuilder.

To review the problem: when you look at the source of http://news.bbc.co.uk, you discover that each
headline link is wrapped in one of two kinds of code. There are a lot of headlines expressed with code
like this:

<B CLASS="h3">Bank
of England mulls rate cut

<B CLASS="h3">Euro

battle revived by Blair speech

and some headlines expressed with code like this:

 <B class="h2"> Swissair shares wiped out

<A
href="/hi/english/world/middle_east/newsid_1576000/1576113.stm
">
 <B class="h1">Mid-East blow to US anti-terror drive

(Note that in this second case, the B element's class value can be h1 or h2.)

In both cases, we can find what we want by first looking for B elements. We then look for the href
attribute either on the A element that's a child of this B element, or on the A element that's this B
element's parent. Whether we look for a parent A node or a child A node depends on the class attribute
of the B element. To make sure we're on the right track, we can code up something to formalize our
idea of what sorts of nodes we want, and call the dump method on each of them.

use strict;
use HTML::TreeBuilder 3;

my $tree = HTML::TreeBuilder->new();
$tree->parse_file('bbc.html') || die $!; # the saved source
from BBC News
scan_bbc_tree($tree, 'http://news.bbc.co.uk/');
$tree->delete();

sub scan_bbc_tree {
 my($root, $docbase) = @_;
 # $docbase will be needed if we want to absolutize the URL
 foreach my $b ($root->find_by_tag_name('b')) {
 my $class = $b->attr('class') || next;
 if($class eq 'h3') {
 # expect one 'a' element as a child
 print "Found a b-h3. Dumping it:\n";
 $b->dump;
 } elsif($class eq 'h1' or $class eq 'h2') {
 # expect the parent to be an 'a'
 print "Found a b-h[1-2]. Dumping its parent:\n";
 $b->parent->dump;
 }
 }
 return;
}

When run on the full file, that program produces this output:

Found a b-h3. Dumping it:
<b class="h3"> @0.1.2.2.0.0.3.2.0.3.0.0.0.0.6
 <a
href="/sport/hi/english/in_depth/2001/england_in_zimbabwe/news
id_1574000/
1574824.stm"> @0.1.2.2.0.0.3.2.0.3.0.0.0.0.6.0
 "Zimbabwe suffer treble blow"

Found a b-h3. Dumping it:
<b class="h3"> @0.1.2.2.0.0.3.2.0.6.1.0

@0.1.2.2.0.0.3.2.0.6.1.0.0
 "UK housing market stalls"

Found a b-h[1-2]. Dumping its parent:

@0.1.2.2.0.0.1.2.0.14.2
 " "
 <b class="h1"> @0.1.2.2.0.0.1.2.0.14.2.1
 "UK hate crime laws to be tightened"

 @0.1.2.2.0.0.1.2.0.14.2.2

Found a b-h[1-2]. Dumping its parent:

@0.1.2.2.0.0.1.2.0.18.2
 " "
 <b class="h2"> @0.1.2.2.0.0.1.2.0.18.2.1
 "Leeds footballers' trial begins"

 @0.1.2.2.0.0.1.2.0.18.2.2

[...and others just like those...]

This output shows all the sorts of nodes from which we'll want to extract data and contains no other
kinds of nodes. With the situation we see in the first two cases, the b element with the
class="h3" attribute indeed has only one child node, which is an a element whose href we
want, and in the latter two cases, we need only look to the href attribute on the parent of the b
element (which has a class="h1" or class="h2" attribute). So because we're identifying
things correctly, we can go ahead and change our code so that instead of dumping nodes, it will
actually pull the hrefs out, absolutize them, and print them:

sub scan_bbc_tree {
 my($root, $docbase) = @_;
 foreach my $b ($root->find_by_tag_name('b')) {
 my $class = $b->attr('class') || next;
 if($class eq 'h3') {
 # Expect one 'a' element as a child
 my @children = $b->content_list;

 if(@children == 1 and ref $children[0] and $children[0]-
>tag eq 'a')
 print URI->new_abs(
 $children[0]->attr('href') || next,
 $docbase
), "\n";
 }
 } elsif($class eq 'h1' or $class eq 'h2') {
 # Expect an 'a' element as a parent
 my $parent = $b->parent;
 if($parent and $parent->tag eq 'a') {
 print URI->new_abs(
 $parent->attr('href') || next,
 $docbase
), "\n";
 }
 }
 }
 return;
}

When run, this correctly reports all the URLs in the document:

http://news.bbc.co.uk/sport/hi/english/in_depth/2001/england_i
n_zimbabwe/newsid_
1574000/1574824.stm
http://news.bbc.co.uk/hi/english/business/newsid_1576000/15765
46.stm
http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/15
76051.stm
http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
[...etc...]

If we want to make our program also capture the text inside the link, that's straightforward too; we
need only change each occurrence of:

print URI->new_abs(...

to:

print $b->as_text(), "\n ", URI->new_abs(...

Then you'll get output like this:

UK housing market stalls

http://news.bbc.co.uk/hi/english/business/newsid_1576000/15765
46.stm
UK hate crime laws to be tightened

http://news.bbc.co.uk/hi/english/uk_politics/newsid_1576000/15
76051.stm
Leeds footballers' trial begins

http://news.bbc.co.uk/hi/english/uk/newsid_1576000/1576379.stm
 Swissair shares wiped out

http://news.bbc.co.uk/hi/english/business/newsid_1576000/15766
36.stm
[...]

Notice that in the fourth link there, we have a space at the start. Wanting to not have whitespace at the
start or end of as_text() is common enough that there's a method just for that:
as_trimmed_text(), which wraps around as_text(), removes any whitespace at the
start or end, and collapses any whitespace nodes on the inside.[1] When we replace our calls to
get_text() with calls to get_trimmed_text(), that last link changes to this:

[1] This is exactly the same as the $stream->get_text() versus $stream-
>get_trimmed_text() distinction in HTML::TokeParser.

[...]
Swissair shares wiped out

http://news.bbc.co.uk/hi/english/business/newsid_1576000/15766
36.stm
[...]

that is, without the space at the start of the line.

9.5 Example: Fresh Air

Another HTML::TokeParser problem (in Chapter 8) was extracting relevant links from the program
descriptions from the Fresh Air web site. There were aspects of the task that we will not review here
(such as how to request a month's worth of weekday listings at a time), but we will instead focus on
the heart of the program, which is how to take HTML source from a local file, feed it to
HTML::TreeBuilder, and pull the interesting links out of the resulting tree.

If we save the HTML source of a program description page as fresh1.html and sift through its source,
we get a 12-KB file. Only about one 1 KB of that is real content, like this:

...

 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#FFCC00"
SIZE="2">
 Listen to Monday - July 2, 2001

...

 Liste
n to
 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="3">
 Editor and writer Walter Kirn

<FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="2">
<BLOCKQUOTE>Editor and writer <A
HREF="http://freshair.npr.org/guestInfoFA.cfm?name=walterkirn"
>Walter
Kirn's new novel <I>Up in the Air</I> (Doubleday) is about
...
</BLOCKQUOTE>

 Liste
n to
 <FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="3">
 Casting director and actress Joanna Merlin

<FONT FACE="Verdana, Charcoal, Sans Serif" COLOR="#ffffff"
SIZE="2">
<BLOCKQUOTE>Casting director and actress <A
HREF="http://freshair.npr.org/guestInfoFA.cfm?name=joannamerli
n">Joanna
Merlin has written a new guide for actors, <I>Auditioning:
An
...
</BLOCKQUOTE>

...

The rest of the file is mostly taken up by some JavaScript, some search box forms, and code for a
button bar, which contains image links like this:

...

<IMG
SRC="images/nav_archived_on.gif"
ALT="Archived Shows" WIDTH="124" HEIGHT="36" BORDER="0"
HSPACE="0" VSPACE="0">
<IMG
SRC="images/nav_commentators_off.gif" ALT="Commentators"
WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0" VSPACE="0">
<IMG SRC="images/nav_about_off.gif"
ALT="About Fresh Air"
WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0" VSPACE="0">
<IMG
SRC="images/nav_stations_off.gif" ALT="Find a Station"
WIDTH="124" HEIGHT="36" BORDER="0" HSPACE="0" VSPACE="0">
...

Then, after the real program description text, there is code that links to the description pages for the
previous and next shows:

...
<TD WIDTH="50%" ALIGN="left" BGCOLOR="#4F4F85">
 <FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00">
 «

 <FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00">
 Previous show

</TD>
<TD WIDTH="50%" ALIGN="right" BGCOLOR="#4F4F85">

 <FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00">
 Next show

 <FONT FACE="Verdana, Charcoal, Sans Serif" SIZE="2"
COLOR="#FFCC00">
 »

</TD>
...

The trick is in capturing the URLs and link text from each program link in the main text, while
ignoring the button bar links and the "Previous Show" and "Next Show" links. Two criteria distinguish
the links we want from the links we don't: First, each link that we want (i.e., each a element with an
href attribute) has a font element as a child; and secondly, the text content of the a element starts

with "Listen to" (which we incidentally want to leave out when we print the link text). This is directly
implementable with calls to HTML::Element methods:

use HTML::TreeBuilder;
my $tree = HTML::TreeBuilder->new;
$tree->parse_file('fresh1.html') || die $!;
my $base_url = 'http://www.freshair.com/whatever';
 # for resolving relative URLs

foreach my $a ($tree->find_by_tag_name('a')) {

 my $href = $a->attr('href') || next;
 # Make sure it has an href attribute

 next unless grep ref($_) && $_->tag eq 'font', $a-
>content_list;
 # Make sure (at least) one of its children is a font
element

 my $text_content = $a->as_text;
 next unless $text_content =~ s/^\s*Listen to\s+//s;
 # Make sure its text content starts with that (and remove
it)

 # It's good! Print it:
 use URI;
 print "$text_content\n ", URI->new_abs($href, $base_url),
"\n";
}

$tree->delete; # Delete tree from
memory

Chapter 10. Modifying HTML with Trees

In Chapter 9, we saw how to extract information from HTML trees. But that's not the only thing you
can use trees for. HTML::TreeBuilder trees can be altered and can even be written back out as HTML,
using the as_HTML() method. There are four ways in which a tree can be altered: you can alter a
node's attributes; you can delete a node; you can detach a node and reattach it elsewhere; and you can
add a new node. We'll treat each of these in turn.

10.1 Changing Attributes

Suppose that in your new role as fixer of large sets of HTML documents, you are given a bunch of
documents that have headings like this:

<h3 align=center>Free Monkey</h3>
<h3 color=red>Inquire Within</h3>

that need to be changed like this:

<h2 class=scream>Free Monkey</h2>
<h4 class=mutter>Inquire Within</h4>

Before you start phrasing this in terms of HTML::Element methods, you should consider whether this
can be done with a search-and-replace operation in an editor. In this case, it cannot, because you're not
just changing every <h3 align=center> to <h2 class=scream> and every <h4
color=red> to <h3 class=mutter> (which are apparently simple search-and-replace
operations), you also have to change </h3> to </h2> or to </h4>, depending on what you did to
the element that it closes. That sort of context dependency puts this well outside the realm of simple
search-and-replace operations. One could try to implement this with HTML::TokeParser, reading
every token and printing it back out, after having possibly altered it. In such a program, every time we
see an <h3...> and maybe alter it, we'd have to set a flag indicating what the next </h3> should
be changed to.

So far, you've seen the method $element->attr(attrname) to get the value of an attribute
(returning undef if there is no such attribute). To alter attribute values, you need only two additional
syntaxes: $element->attr(attrname, newval) sets a value (regardless of whether that
attribute had a previous value), and $element->attr(attrname, undef) deletes an
attribute. That works even for changing the _tag attribute (for which the $element->tag
method is a shortcut).

That said, it's just a matter of knowing what nodes to change and then changing them, as in Example
10-1.

Example 10-1. Modifying attributes

use strict;
use HTML::TreeBuilder;
my $root = HTML::TreeBuilder->new;
$root->parse_file('rewriters1/in1.html') || die $!;

print "Before:\n";
$root->dump;

my @h3_center = $root->look_down('_tag', 'h3', 'align',
'center');
my @h3_red = $root->look_down('_tag', 'h3', 'color',
'red');
foreach my $h3c (@h3_center) {
 $h3c->attr('_tag', 'h2');
 $h3c->attr('style', 'scream');
 $h3c->attr('align', undef);
}

foreach my $h3r (@h3_red) {
 $h3r->attr('_tag', 'h4');
 $h3r->attr('style', 'mumble');
 $h3r->attr('color', undef);
}

print "\n\nAfter:\n";
$root->dump;

Suppose that the input file consists of this:

<html><body>

<h3 align=center>Free Monkey</h3>
<h3 color=red>Inquire Within</h3>
<p>It's a monkey! And it's free!</html>

When we run the program, we can see the tree dump before and after the modifications happen:

Before:
<html> @0
 <head> @0.0 (IMPLICIT)
 <body> @0.1
 <h3 align="center"> @0.1.0
 "Free Monkey"
 <h3 color="red"> @0.1.1
 "Inquire Within"
 <p> @0.1.2
 "It's a monkey! "
 @0.1.2.1
 "And it's free!"

After:
<html> @0
 <head> @0.0 (IMPLICIT)

 <body> @0.1
 <h2 style="scream"> @0.1.0
 "Free Monkey"
 <h4 style="mumble"> @0.1.1
 "Inquire Within"
 <p> @0.1.2
 "It's a monkey! "
 @0.1.2.1
 "And it's free!"

The changes applied correctly, so we can go ahead and add this code to the end of the program, to
dump the tree to disk:

open(OUT, ">rewriters1/out1.html") || die "Can't write: $!";
print OUT $root->as_HTML;
close(OUT);
$root->delete; # done with it, so delete it

10.1.1 Whitespace

Examining the output file shows it to be one single line, consisting of this (wrapped so it will fit on the
page):

<html><head></head><body><h2 style="scream">Free
Monkey</h2><h4
style="mumble">Inquire Within</h4><p>It's a monkey! And
it's
free!</body></html>

Where did all the nice whitespace from the original go, such as the newline after each </h3>?

Whitespace in HTML (except in pre elements and a few others) isn't contrastive. That is, any amount
of whitespace is as good as just one space. So whenever HTML::TreeBuilder sees whitespace tokens
as it is parsing the HTML source, it compacts each group into a single space. Furthermore, whitespace
between some kinds of tags (such as between </h3> and <h3>, or between </h3> and <p>) isn't
meaningful at all, so when HTML::TreeBuilder sees such whitespace, it just discards it.

This whitespace mangling is the default behavior of an HTML::TreeBuilder tree and can be changed
by two options that you set before parsing from a file:

my $root = HTML::TreeBuilder->new;

$root->ignore_ignorable_whitespace(0);
 # Don't try to delete whitespace between block-level
elements.

$root->no_space_compacting(1);
 # Don't smash every whitespace sequences into a single
space.

With those lines added to our program, the parse tree output file ends up with the appropriate
whitespace.

<html><head></head><body>

<h2 style="scream">Free Monkey</h2>
<h4 style="mumble">Inquire Within</h4>

<p>It's a monkey! And it's free!</body>

</html>

An alternative is to have the as_HTML() method try to indent the HTML as it prints it. This is
achieved by calling as_HTML like so:

print OUT $root->as_HTML(undef, " ");

This feature is still somewhat experimental, and its implementation might change, but at time of this
writing, this makes the output file's code look like this:

<html>
 <head>
 </head>
 <body>
 <h2 style="scream">Free Monkey</h2>
 <h4 style="mumble">Inquire Within</h4>
 <p>It's a monkey! And it's free!</body>
</html>

10.1.2 Other HTML Options

Besides this indenting option, there are further options to as_HTML(), as described in Chapter 9.
One option controls whether omissible end-tags (such as </p> and) are printed.

Another controls what characters are escaped using &foo; sequences. Notably, by default, this
encodes all characters over ASCII 126, so for example, as_HTML will print an é in the parse tree as
é (whether it came from a literal é or from an é). This is always safe, but in
cases where you're dealing with text with a lot of Latin-1 or Unicode characters, having every one of
those characters encoded as a &foo; sequence might be bothersome to any people looking at the
HTML markup output.

In that case, your call to as_HTML can consist of $root->as_HTML('<>&'), in which case
only the minimum of characters (<, >, and &) will be escaped. There's no point is using these options
(or in preserving whitespace with ignore_ignorable_whitespace and
no_space_compacting) if you're reasonably sure nobody will ever be looking at the resulting
HTML. But for cases where people might need to look at the HTML, these options will make the code
more inviting than just one huge block of HTML.

10.2 Deleting Images

Instead of altering nodes or extracting data from them, it's common to want to just delete them. For
example, consider that we have the task of taking normally complex and image-rich web pages and
making unadorned text-only versions of them, such as one would print out or paste into email. Each
document in question has one big table with three rows, like this:

<html>
<head><title>Shatner and Kunis Sweep the Oscars</title></head>
<body>
<table>
 <tr class="top_button_bar">
 ...appalling amounts of ad banners and button bars...
 </tr>
 <tr class="main">
 <td class="left_geegaws">
 ...yet more ads and button bars...
 </td>
 <td class="story">

 <h1>Shatner and Kunis Sweep the Oscars</h1>

 <p>Stars of <cite>American Psycho II</cite> walked away
with four
 Academy Awards...

 </td>
 <td class="right_geegaws">
 ...even more ads...
 </td>
 </tr>
 <tr class="top_button_bar">
 ...ads, always ads...
 </tr>
</table>
<hr>Copyright 2002, United Lies Syndicate
</html>

The simplified version of such a page should omit all images and elements of the class
top_button_bar, bottom_button_bar, left_geegaws, and right_geegaws.
This can be implemented with a simple call to look_down:

use HTML::TreeBuilder;
my $root = HTML::TreeBuilder->new;
$root->parse_file('rewriters1/in002.html') || die $!;

foreach my $d ($root->look_down(

 sub {
 return 1 if $_[0]->tag eq 'img'; # we're looking for
images
 # no class means ignore it
 my $class = $_[0]->attr('class') || return 0;
 return 1 if $class eq 'top_button_bar' or $class eq
'right_geegaws'
 or $class eq 'bottom_button_bar' or $class eq
'left_geegaws';
 return 0;
 }
)) {
 $d->delete;
}

open(OUT, ">rewriters1/out002.html") || die "Can't write: $!";
print OUT $root->as_HTML(undef, ' '); # two-space indent in
output
close(OUT);
$root->delete; # done with it, so delete it

The call to $d->delete detaches the node in $d from its parent, then destroys it along with all its
descendant nodes. The resulting file looks like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <table>
 <tr class="main">
 <td class="story">
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked
[...] </td>
 </tr>
 </table>
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

One pragmatic point here: the list returned by the look_down() call will contain the two tr and
td elements, any images they contain, and also images elsewhere in the document. When we delete
one of those tr or td nodes, we are also implicitly deleting every one of its descendant nodes,
including some img elements that we are about to hit in a subsequent iteration through
look_down()'s return list.

This isn't a problem in this case, because deleting an already deleted node is a harmless no-operation.
The larger point here is that when look_down() finds a matching node (as with a
left_geegaws td node, in our example), that doesn't stop it from looking below that node for

more matches. If you need that kind of behavior, you'll need to implement it in your own traverser, as
discussed in Chapter 9.

10.3 Detaching and Reattaching

Suppose that the output of our above rewriter is not satisfactory. While its output contains an
apparently harmless one-cell one-row table, this is somehow troublesome when the president of the
company tries viewing that web page on his cellphone/PDA, which has a typically limited
understanding of HTML. Some experimentation shows that any web pages with tables in them will
deeply confuse the boss's PDA.

So your task should be changed to this: find the one interesting cell in the table (the td with
class="story"), detach it, then replace the table with the td, and delete the table. This is a
complex series of actions, but luckily every one of them is directly translatable into an
HTML::Element method. The result is Example 10-2.

Example 10-2. Detaching and reattaching nodes

use strict;
use HTML::TreeBuilder;
my $root = HTML::TreeBuilder->new;
$root->parse_file('rewriters1/in002.html') || die $!;

my $good_td = $root->look_down('_tag', 'td', 'class',
'story',);
die "No good td?!" unless $good_td; # sanity checking
my $big_table = $root->look_down('_tag', 'table');
die "No big table?!" unless $big_table; # sanity checking

$good_td->detach;
$big_table->replace_with($good_td);
 # Yes, there's even a method for replacing one node with
another!

open(OUT, ">rewriters1/out002b.html") || die "Can't write:
$!";
print OUT $root->as_HTML(undef, ' '); # two-space indent in
output
close(OUT);
$root->delete; # done with it, so delete it

The resulting document looks like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <td class="story">

 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...]
</td>
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

One problem, though: we have a td outside of a table. Simply change it from a td element into
something innocuous, such as a div, and while we're at it, delete that class attribute:

$good_td->tag('div');
$good_td->attr('class', undef);

That makes the output look like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <div>
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...]
</div>
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

An alternative is not to detach and save the td in the first place, but to detach and save only its
content. That's simple enough:

my @good_content = $good_td->content_list;
foreach my $c (@good_content) {
 $c->detach if ref $c;
 # text nodes aren't objects, so aren't really "attached"
anyhow
}

10.3.1 The detach_content() Method

The above task is so common that there's a method for it, called detach_content(), which
detaches and returns the content of the node on which it's called. So we can simply modify our
program to read:

my @good_content = $good_td->detach_content;

$big_table->replace_with(@good_content);
$big_table->delete;

However you chose to express the node-moving operations, the parse tree looks like this:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars</title>
 </head>
 <body>
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked [...]
 <hr>Copyright 2002, United Lies Syndicate </body>
</html>

In fact, every HTML::Element method that allows you to attach a node someplace (as
replace_with does) will first detach that node if it's already attached elsewhere. So you could
actually skip the whole detach_content() process step and just write this:

$big_table->replace_with($good_td->content_list);
$big_table->delete;

It does the same thing and results in the same output.

10.3.2 Constraints

There are some constraints on what you can expect replace_with() to do, but these are just
three constraints against fairly odd things that you would probably not try anyway. Namely, the
documentation says you can't replace an element with multiple instances of itself; you can't replace an
element with one (or more) of its siblings; and you can't replace an element that has no parent, because
replacing an element inherently means altering the content list of its parent.

Many methods in the HTML::Element documentation have similar constraints spelled out, although
the typical programmer will never find them to be an obstacle in and of themselves. If one of those
constraints is violated, it is typically a sign that something is conceptually wrong elsewhere in the
program.

For example, if you try $element->replace_with(...) and are surprised by an error
message that "the target node has no parent," it is almost definitely because you either already
replaced the element with something (leaving it parentless) or deleted it (leaving it parentless,
contentless, and attributeless). For example, that error message would result if our program had this:

$big_table->delete;
$big_table->replace_with($good_td->content_list);
Wrong!

instead of this:

$big_table->replace_with($good_td->content_list);
$big_table->delete;
Right.

10.4 Attaching in Another Tree

So far we've detached elements from one part of a tree and attached them elsewhere in the same tree.
But there's nothing stopping you from attaching them in other trees.

For example, consider a case like the above example, where we extract the text in the <td
class="story"> ... </td> element, but this time, instead of attaching it elsewhere in the
same document tree, we're attaching it at a certain point in a different tree that we're using as a
template. The template document looks like this:

<html><head><title>Put the title here</title></head>
<body><!-- printable version -->
<blockquote>

<!-- start -->
...put the content here...
<!-- end -->
<hr>Copyright 2002. Printed from the United Lies Syndicate
web site.

</blockquote>
</body></html>

You'll note that the web designers have helpfully inserted comments to denote where the inserted
content should start and end. But when you have HTML::TreeBuilder parse the document with default
parse options and dump the tree, you don't see any sign of the comments:

<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <blockquote> @0.1.0
 @0.1.0.0
 " ...put the content here... "
 <hr> @0.1.0.0.1
 "Copyright 2002. Printed from the United Lies
Syndicate web site. "

10.4.1 Retaining Comments

However, storing comments is controlled by an HTML::TreeBuilder parse option,
store_comments(), which is off by default. If we parse the file like so:

use strict;
use HTML::TreeBuilder;
my $template_root = HTML::TreeBuilder->new;
$template_root->store_comments(1);
$template_root->parse_file('rewriters1/template1.html')
 || die "Can't read template file: $!";

$template_root->dump;

the comments now show up in the parse tree:

<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <!-- printable version --> @0.1.0
 <blockquote> @0.1.1
 @0.1.1.0
 <!-- start --> @0.1.1.0.0
 " ...put the content here... "
 <!-- end --> @0.1.1.0.2
 <hr> @0.1.1.0.3
 "Copyright 2002. Printed from the United Lies
Syndicate web site. "

10.4.2 Accessing Comments

What's left is to figure out how to take out what's between the <!-- start --> and <!--
end --> comments, to insert whatever content needs to be put in there, then to write out the
document. First we need to find the comments, and to do that we need to figure out how comments are
stored in the tree, because so far we've only dealt with elements and bits of text.

Mercifully, what we know about element objects in trees still applies, because that's how comments
are stored: as element objects. But because comments aren't actual elements, the HTML::Element
documentation refers to them as pseudoelements, and they are given a tag name that no real element
could have: ~comment. The actual content of the comment (start) is stored as the value of the
text attribute. In other words, <!-- start --> is stored as if it were <~comment text='
start '></~comment>. So finding comments is straightforward:

foreach my $c ($template_root->find_by_tag_name('~comment')) {
 print "A comment has text [", $c->attr('text'), "].\n";
}

That prints this:

A comment has text [printable version]
A comment has text [start]
A comment has text [end]

Finding the start and end comments is a matter of filtering those comments:

use strict;
use HTML::TreeBuilder;
my $template_root = HTML::TreeBuilder->new;
$template_root->store_comments(1);

$template_root->parse_file('rewriters1/template1.html')
 || die "Can't read template file: $!";

my($start_comment, $end_comment);
foreach my $c ($template_root->find_by_tag_name('~comment')) {
 if($c->attr('text') =~ m/^\s*start\s*$/) {
 $start_comment = $c;
 } elsif($c->attr('text') =~ m/^\s*end\s*$/) {
 $end_comment = $c;
 }
}
die "Couldn't find template's 'start' comment!" unless
$start_comment;
die "Couldn't find template's 'end' comment!" unless
$end_comment;

die "start and end comments don't have the same parent?!"
 unless $start_comment->parent eq $end_comment->parent;
Make sure things are sane.

10.4.3 Attaching Content

Once that's done, we need some way of taking some new content (which we'll get elsewhere) and
putting that in place of what's between the "start" comment and the "end" comment. There are many
ways of doing this, but this is the most straightforward in terms of the methods we've already seen in
this chapter:

sub put_into_template {
 my @to_insert = @_;
 my $parent = $start_comment->parent;
 my @old_content = $parent->detach_content;
 my @new_content;

 # Copy everything up to the $start_comment into
@new_content,
 # and then everything starting at $end_comment, and ignore
 # everything inbetween and instead drop in things from
@to_insert.

 my $am_saving = 1;
 foreach my $node (@old_content) {
 if($am_saving) {
 push @new_content, $node;
 if($node eq $start_comment) {
 push @new_content, @to_insert;
 $am_saving = 0; # and start ignoring nodes.
 }
 } else { # I'm snipping out things to ignore
 if($node eq $end_comment) {

 push @new_content, $node;
 $am_saving = 1;
 } else { # It's an element to ignore, and to destroy.
 $node->delete if ref $node;
 }
 }
 }
 $parent->push_content(@new_content); # attach new children
 return;
}

This seems a bit long, but it's mostly the work of just tracking whether we're in the mode of saving
things from the old content list or ignoring (and in fact deleting) things from the old content list. With
that subroutine in our program, we can test whether it works:

put_into_template("Testing 1 2 3.");
$template_root->dump;
put_into_template("Is this mic on?");
$template_root->dump;

That prints this:

<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <!-- printable version --> @0.1.0
 <blockquote> @0.1.1
 @0.1.1.0
 <!-- start --> @0.1.1.0.0
 "Testing 1 2 3."
 <!-- end --> @0.1.1.0.2
 <hr> @0.1.1.0.3
 "Copyright 2002. Printed from the United Lies
Syndicate web site. "
<html> @0
 <head> @0.0
 <title> @0.0.0
 "Put the title here"
 <body> @0.1
 <!-- printable version --> @0.1.0
 <blockquote> @0.1.1
 @0.1.1.0
 <!-- start --> @0.1.1.0.0
 "Is this mic on?"
 <!-- end --> @0.1.1.0.2
 <hr> @0.1.1.0.3

 "Copyright 2002. Printed from the United Lies
Syndicate web site. "

This shows that not only did we manage to replace the template's original ...put the content
here... text node with a Testing 1 2 3. node, but also another call to replace it with Is
this mic on? worked too. From there, it's just a matter of adapting the code from the last section,
which found the content in a file. Except this time we use our new put_into_template()
function on that content:

Read an individual file for its content now.
my $content_file_root = HTML::TreeBuilder->new;
my $input_filespec = 'rewriters1/in002.html'; # or whatever
input file
$content_file_root->parse_file($input_filespec)
 || die "Can't read input file $input_filespec: $!";

Find its real content:
my $good_td = $content_file_root->look_down('_tag', 'td',
'class', 'story',);
die "No good td?!" unless $good_td;

put_into_template($good_td->content_list);
$content_file_root->delete; # We don't need it anymore.

open(OUT, ">rewriters1/out003a.html") || die "Can't write:
$!";
 # or whatever output filespec
print OUT $template_root->as_HTML(undef, ' '); # two-space
indent in output
close(OUT);

When this runs, we see can see in the output file that the content was successfully inserted into the
template and written out:

<html>
 <head>
 <title>Put the title here</title>
 </head>
 <body>
 <!-- printable version -->
 <blockquote>
 <!-- start -->
 <h1>Shatner and Kunis Sweep the Oscars</h1>
 <p>Stars of <cite>American Psycho II</cite> walked
away with four Academy
 Awards...
 <!-- end -->
 <hr>Copyright 2002. Printed from the United Lies
Syndicate web site.

 </blockquote>
 </body>
</html>

All is well, except the title is no good. It still says "Put the title here". All that's left is to replace the
content of the template's title with the content of the current file's title. We just find the title
element in each, and swap content:

my $template_title = $template_root->find_by_tag_name('title')
 || die "No title in template?!";
$template_title->delete_content;
my $content_title = $content_file_root-
>find_by_tag_name('title');
if($content_title) {
 $template_title->push_content($content_title->content_list
);
 # This method, like all methods, automatically detaches
 # elements from where they are currently, as necessary.
} else {
 $template_title->push_content('No title');
}

We put that code in our program anywhere between when we read the file into
$content_file_root and when we destroy it; it works happily and puts the right content into
the output file's title element:

<html>
 <head>
 <title>Shatner and Kunis Sweep the Oscars </title>
 </head>
[...]

Because this works for a single given input file, and because we tested earlier to make sure our
put_into_template() routine works for all subsequent invocations as well as for the
first, that means we have the main building block for a system that does template extraction and
insertion for any number of files. All we have to do is turn that into a function, and call it as many
times as needed. For example:

...read in $template_root...
...get names of files to change into @input_files...
foreach my $input_filespec (@input_files) {
 template_redo($input_filespec,
"../printables/$input_filespec");
}

sub template_redo {
 my($input_filespec, $output_filespec) = @_;
 my $content_file_root = HTML::TreeBuilder->new;
 $content_file_root->parse_file($input_filespec)

 || die "Can't read input file $input_filespec: $!";

 # ...then extract content and put into the template tree,
as above...

 $content_file_root->delete; # We don't need it anymore.
 open(OUT, ">$output_filespec") || die "Can't write
$output_file: $!";
 print OUT $template_root->as_HTML(undef, ' ');
 close(OUT);
}

10.5 Creating New Elements

So far we haven't directly created any new HTML::Element objects. All the elements that have
appeared thus far were created by HTML::TreeBuilder as part of its delegated task of building whole
trees. But suppose that we actually do need to add something to a tree that never existed elsewhere in
that or any other tree. In the above section, we actually snuck in creating a new node in this statement:

$template_title->push_content('No title');

But that's hardly an amazing feat, because that node isn't a real object. You can actually create a new
object by calling HTML::Element->new('tagname'). So this would add an hr element to
a given paragraph object:

my $hr = HTML::Element->new('hr');
$paragraph->push_content($hr);

And you could create a new img node with given attributes:

my $img = HTML::Element->new('img');
$img->attr('src', 'hooboy.png');
$img->attr('alt', 'Lookit that!');
$paragraph->push_content($img);

Incidentally, the setting of attributes can be done in the constructor call:

my $img = HTML::Element->new('img', # plus any key,value
pairs...
 'src' => 'hooboy.png',
 'alt' => 'Lookit that!',
);
$paragraph->push_content($img);

This is simple enough, but it becomes rather annoying when you want to construct several linked
nodes. For example, suppose you wanted to construct objects equivalent to what you'd get if you
parsed this:

See here.!

Even this little treelet is fairly tedious to produce using normal constructor calls:

use HTML::Element;

my $li = HTML::Element->new('li');
my $b = HTML::Element->new('b');
my $a = HTML::Element->new('a', 'href' => 'page.html');
$a->push_content('here.');
$b->push_content($a);
$li->push_content("See ", $b, "!");

Have a look:
print $li->as_HTML, "\n";
$li->dump;

That indeed shows us that we succeeded in constructing what we wanted:

See here.!

 @0
 "See "
 @0.1
 @0.1.0
 "here."
 "!"

10.5.1 Literals

If you try manually constructing and linking every element in a larger structure such as a table, the
code will be maddening. One solution is not to create the elements at all, but to create a single
element, called a ~literal pseudoelement, that contains the raw source you want to appear when
that part of the tree is dumped. These sorts of objects are very much like the ~comment
pseudoelements we saw in the last section; their real content is in their text attribute:

my $li = HTML::Element->new('~literal',
 'text', 'See here.!'
);

This constructs something that will appear as that chunk of text when as_HTML() is called on it,
but it's nothing like a normal HTML element—you can't put other elements or text under it, and you
can't see it with look_down or find_by_tag_name() (unless you're looking for a
~literal element, which you're probably not).

10.5.2 New Nodes from Lists

Literals are fine for cases where you just want to drop arbitrarily large amounts of undigested HTML
source into a tree right before you call as_HTML(). But when you want to really make new, full-

fledged elements, you can do that with a friendlier syntax with the new_from_lol()
constructor.

With new_from_lol(), you can specify an element with a list reference whose first item
should be the tag name, which then specifies attributes with an optional hash reference, and then
contains any other nodes, either as bits of text, preexisting element objects, or more list references.
This is best shown by example:

my $li = HTML::Element->new_from_lol(
 ['li',
 "See ",
 ['b',
 ['a',
 {'href' => 'page.html'},
 "here."
]
],
 "!"
]
); # or indent it however you prefer -- probably more
concisely

And this produces exactly the same tree as when we called HTML::Element->new three times
then linked up the resulting elements.

The benefits of the new_from_lol() approach are you can easily specify children at
construction time, and it's very hard to produce mis-nested trees, because if the number of ['s above
doesn't match the number of]'s, it won't parse as valid Perl. Moreover, it can actually be a relatively
concise format. The above code, with some whitespace removed, basically fits happily on one line:

my $li = HTML::Element->new_from_lol(
 ['li', "See ", ['b', ['a', {'href' => 'page.html'},
"here."]], "!"]
);

So, for example, consider returning to the template-insertion problem in the previous section, and
suppose that besides dumping the article's content into a template, we should also preface the content
with something like this:

<p>The original version of the following story is to found at:

$orig_url</p>
<hr>

This can be done by replacing:

put_into_template($good_td->content_list);

with this:

Assuming $orig_url has been set somewhere...

put_into_template(
 HTML::Element->new_from_lol(
 ['p', "The original version of the following story is to
found at:",
 ['a', {'href', $orig_url}, $orig_url],
]
),
 HTML::Element->new_from_lol(['hr']),
 $good_td->content_list,
);

If you find new_from_lol() notation to be an unnecessary elaboration, you can still manually
construct each element with HTML::Element->new and link them up before passing them to
put_into_template(). Or you could just as well create a ~literal pseudoelement
containing the raw source:

put_into_template(
 HTML::Element->new('~literal', 'text' => qq{
 <p>The original version of the following story is to
found at:

$orig_url</p>
 <hr>
 }),
 $good_td->content_list,
);

While the new_from_lol() syntax is an expressive shorthand for the general form of element
construction, you may well prefer the directness of creating a single ~literal or the simplicity of
normal ->new calls. As the Perl saying goes, there is more than one way to do it.

Chapter 11. Cookies, Authentication, and Advanced
Requests

Not every document can be fetched with a simple GET or POST request. Many pages require
authentication before you can access them, some use cookies to keep track of the different users, and
still others want special values in the Referer or User-Agent headers. This chapter shows you
how to set arbitrary headers, manage cookies, and even authenticate using LWP. You'll be able to
make your LWP programs appear to be Netscape or Internet Explorer, log in to a protected site, and
work with sites that use cookies.

For example, suppose you're automating a web-based purchasing system. The server requires you to
log in, then issues you a cookie to prove you've been authenticated. You must then send this cookie
back to the server with every request you make.

Or, more mundanely, suppose you're extracting information from one of the many web sites that check
the User-Agent header in your requests. If your User-Agent doesn't identify yours as a recent
version of Netscape or Internet Explorer, the server sends you back an "Upgrade your browser" page.
You need to set the User-Agent header to make it appear that you are using Netscape or Internet
Explorer.

11.1 Cookies

HTTP was originally designed as a stateless protocol, meaning that each request is totally independent
of other requests. But web site designers felt the need for something to help them identify the user of a
particular session. The mechanism that does this is called a cookie. This section gives some
background on cookies so you know what LWP is doing for you.

An HTTP cookie is a string that an HTTP server can send to a client, which the client is supposed to
put in the headers of any future requests that it makes to that server. Suppose a client makes a request
to a given server, and the response headers consist of this:

Date: Thu, 28 Feb 2002 04:29:13 GMT
Server: Apache/1.3.23 (Win32)
Content-Type: text/html
Set-Cookie: foo=bar; expires=Thu, 20 May 2010 01:23:45 GMT;
path=/

This means that the server wants all further requests from this client to anywhere on this site (i.e.,
under /) to be accompanied by this header line:

Cookie: foo=bar

That header should be present in all this browser's requests to this site, until May 20, 2010 (at 1:23:45
in the morning), after which time the client should never send that cookie again.

A Set-Cookie line can fail to specify an expiration time, in which case this cookie ends at the end
of this "session," where "session" is generally seen as ending when the user closes all browser
windows. Moreover, the path can be something more specific than /. It can be, for example, /dahut/,

in which case a cookie will be sent only for URLs that begin http://thishost/dahut/. Finally, a cookie
can specify that this site is not just on this one host, but also on all other hosts in this subdomain, so
that if this host is search.mybazouki.com, cookies should be sent to any hostname under
mybazouki.com, including images.mybazouki.com, ads.mybazouki.com, extra.stuff.mybazouki.com,
and so on.

All those details are handled by LWP, and you need only make a few decisions for a given
LWP::UserAgent object:

• Should it implement cookies at all? If not, it will just ignore any Set-Cookie: headers
from the server and will never send any Cookie: headers.

• Should it load cookies when it starts up? If not, it will start out with no cookies.
• Should it save cookies to some file when the browser object is destroyed? If not, whatever

cookies it has accumulated will be lost.
• What format should the cookies file be in? Currently the choices are either a format particular

to LWP, or Netscape cookies files.

11.1.1 Enabling Cookies

By default, an LWP::UserAgent object doesn't implement cookies. To make an LWP::UserAgent
object that implements cookies is as simple as this:

my $browser = LWP::UserAgent->new();
$browser->cookie_jar({});

However, that browser object's cookie jar (as we call its HTTP cookie database) will start out empty,
and its contents won't be saved anywhere when the object is destroyed. Incidentally, the above code is
a convenient shortcut for what one previously had to do:

Load LWP class for "cookie jar" objects
use HTTP::Cookies;
my $browser = LWP::UserAgent->new();
my $cookie_jar = HTTP::Cookies->new();
$browser->cookie_jar($cookie_jar);

There's not much point to using the long form when you could use the short form instead, but the
longer form becomes preferable when you're adding options to the cookie jar.

11.1.2 Loading Cookies from a File

To start the cookie jar by loading from a particular file, use the file option to the
HTTP::Cookies new method:

use HTTP::Cookies;
my $cookie_jar = HTTP::Cookies->new(
 file => "/some/where/cookies.lwp",
);
my $browser = LWP::UserAgent->new;
$browser->cookie_jar($cookie_jar);

In that case, the file is read when the cookie jar is created, but it's never updated with any new cookies
that the $browser object will have accumulated.

To read the cookies from a Netscape cookies file instead of from an LWP-format cookie file, use a
different class, HTTP::Cookies::Netscape, which is just like HTTP::Cookies, except for the format
that it reads and writes:

use HTTP::Cookies::Netscape;
my $cookie_jar = HTTP::Cookies::Netscape->new(
 file => "c:/program
files/netscape/users/shazbot/cookies.txt",
);
my $browser = LWP::UserAgent->new;
$browser->cookie_jar($cookie_jar);

11.1.3 Saving Cookies to a File

To make LWP write out its potentially changed cookie jar to a file when the object is no longer in use,
add an autosave => 1 parameter:

use HTTP::Cookies;
my $cookie_jar = HTTP::Cookies->new(
 file => "/some/where/cookies.lwp",
 autosave => 1,
);
my $browser = LWP::UserAgent->new;
$browser->cookie_jar($cookie_jar);

At time of this writing, using autosave => 1 with HTTP::Cookies::Netscape has not been
sufficiently tested and is not recommended.

11.1.4 Cookies and the New York Times Site

Suppose that you have felt personally emboldened and empowered by all the previous chapters'
examples of pulling data off of news sites, especially the examples of simplifying HTML in Chapter
10. You decide that a great test of your skill would be to write LWP code that downloads the stories
off various newspapers' web sites and saves them all in a format (either plain text, highly simplified
HTML, or even WML, if you have an html2wml tool around) that your ancient but trusty 2001-era
PDA can read. Thus, you can spend your commute time on the train (or bus, tube, el, metro, jitney, T,
etc.) merrily flipping through the day's news stories from papers all over the world.

Suppose also that you have the basic HTML-simplifying code in place (so we shall not discuss it
further), and the LWP code that downloads stories from all the newspapers is working fine—except
for the New York Times site. And you can't imagine why it's not working! You have a simple
HTML::TokeParser program that gets the main page, finds all the URLs to stories in it, and
downloads them one at a time. You verify that those routines are working fine. But when you look at
the files that it claims to be successfully fetching and saving ($response->is_success
returns true and everything!), all you see for each one is a page that says "Welcome to the New York
Times on the Web! Already a member? Log in!" When you look at the exact same URL in Netscape,

you don't see that page at all, but instead you see the news story that you want your LWP program to
be accessing.

Then it hits you: years ago, the first time you accessed the New York Times site, it wanted you to
register with an email address and a password. But you haven't seen that screen again, because of...
HTTP cookies! You riffle through your Netscape HTTP cookies file, and lo, there you find:

.nytimes.com TRUE / FALSE 1343279235 RMID 809ac0ad1cff9a6b

Whatever this means to the New York Times site, it's apparently what differentiates your copy of
Netscape when it's accessing a story URL, from your LWP program when it's accessing that URL.

Now, you could simply hardwire that cookie into the headers of the $browser->get()
request's headers, but that involves recalling exactly how lines in Netscape cookie databases translate
into headers in HTTP request. The optimally lazy solution is to simply enable cookie support in this
LWP::UserAgent object and have it read your Netscape cookie database. So just after where you
started off the program with this:

use LWP;
my $browser = LWP::UserAgent->new();

Add this:

use HTTP::Cookies::Netscape;
my $cookie_jar = HTTP::Cookies::Netscape->new(
 'file' => 'c:/program files/netscape/users/me/cookies.txt'
);
$browser->cookie_jar($cookie_jar);

With those five lines of code added, your LWP program's requests to the New York Times's server will
carry the cookie that says that you're a registered user. So instead of giving your LWP program the
"Log in!" page ad infinitum, the New York Times's server now merrily serves your program the news
stories. Success!

11.2 Adding Extra Request Header Lines

Here's some simplistic debugging advice: if your browser sees one thing at a given URL, but your
LWP program sees another, first try just turning on cookie support, with an empty cookie jar. If that
fails, have it read in your browser's cookie file.[1] And if that fails, it's time to start wondering what
means the remote site is using for distinguishing your LWP program's requests from your browser's
requests.

[1] Currently there is support for only Netscape cookie files. But check CPAN; someone
might write support for other browsers' cookie files.

Every kind of browser sends different HTTP headers besides the very minimal headers that
LWP::UserAgent typically sends. For example, whereas an LWP::UserAgent browser by default
sends this header line:

User-Agent: libwww-perl/5.5394

Netscape 4.76 sends a header line like this:

User-Agent: Mozilla/4.76 [en] (Win98; U)

And also sends these header fields that an LWP::UserAgent browser doesn't send normally at all:

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
Accept-Charset: iso-8859-1,*,utf-8
Accept-Encoding: gzip
Accept-Language: en-US

(That's assuming you've set your language preferences to U.S. English). That's on top of any
Connection: keep-alive headers that may be sent, if the browser or any intervening firewall
supports that feature (keep-alive) of HTTP.

Opera 5.12 is not much different:

User-Agent: Opera/5.12 (Windows 98; U) [en]
Accept: text/html, image/png, image/jpeg, image/gif, image/x-
xbitmap, */*
Accept-Language: en
Accept-Encoding: deflate, gzip, x-gzip, identity, *;q=0

But a recent version of Netscape gets rather more verbose:

User-Agent: Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en-US;
 rv:0.9.4) Gecko/20011126 Netscape6/6.2.1
Accept: text/xml, application/xml, application/xhtml+xml,
text/html;q=0.9,
 image/png, image/jpeg, image/gif;q=0.2, text/plain;q=0.8,
 text/css, */*;q=0.1
Accept-Charset: ISO-8859-1, utf-8;q=0.66, *;q=0.66
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Language: en-us

Internet Explorer 5.12, in true Microsoft fashion, emits a few nonstandard headers:

Accept: */*
Accept-Language: en
Extension: Security/Remote-Passphrase
UA-CPU: PPC
UA-OS: MacOS
User-Agent: Mozilla/4.0 (compatible; MSIE 5.12; Mac_PowerPC)

Lynx can be verbose in reporting what MIME types my system's /etc/mailcap tells it that it can
handle:

Accept: text/html, text/plain, audio/mod, image/*, video/*,
video/mpeg,
 application/pgp, application/pgp, application/pdf,
message/partial,
 message/external-body, application/postscript, x-be2,
 application/andrew-inset, text/richtext, text/enriched
Accept: x-sun-attachment, audio-file, postscript-file,
default,
 mail-file, sun-deskset-message, application/x-metamail-
patch,
 text/sgml, */*;q=0.01
Accept-Encoding: gzip, compress
Accept-Language: en, es
User-Agent: Lynx/2.8.3dev.18 libwww-FM/2.14

This information can come in handy when trying to make your LWP program seem as much like a
well-known interactive browser as possible

11.2.1 Pretending to Be Netscape

For example, suppose you're looking at http://www.expreszo.nl/home.php and you see that it has
interesting headlines. You'd like to write a headline detector for this site to go with the other headline
detectors we've been producing throughout the book. You look at the source in Netscape and see that
each headline link looks like this:

...text...

So you write something quite simple to capture those links:

use strict;
use warnings;
use LWP;
my $browser = LWP::UserAgent->new;

my $url = 'http://www.expreszo.nl/home.php';
my $response = $browser->get($url);
die "Can't get $url: ", $response->status_line
 unless $response->is_success;
$_ = $response->content;
my %seen;
while(m{href="(headlines.php[^"]+)">(.*?)}sg) {
 my $this = URI->new_abs($1,$response->base);
 print "$this\n $2\n" unless $seen{$this}++;
}
print "NO HEADLINES?! Source:\n", $response->content unless
keys %seen;

And you run it, and it quite stubbornly says:

NO HEADLINES?! Source:
<html><body>
...
Je hebt minimaal Microsoft Internet Explorer versie 4 of
hoger, of
Netscape Navigator versie 4 of hoger nodig om deze site te
bekijken.
...
</body></html>

That is, "you need MSIE 4 or higher, or Netscape 4 or higher, to view this site." It seems to be
checking the User-Agent string of whatever browser visits the site and throwing a fit unless it's
MSIE or Netscape! This is easily simulated, by adding this line right after $browser is created:

$browser->agent('Mozilla/4.76 [en] (Win98; U)');

With that one small change, the server sends the same page you saw in Netscape, and the headline
extractor happily sees the headlines, and everything works:

http://www.expreszo.nl/headlines.php?id=752 Meer syfilis en
HIV bij homo's http://www.expreszo.nl/headlines.php?id=751
Imam hangt geldboete van 1200 boven het hoofd
http://www.expreszo.nl/headlines.php?id=740 SGP wil
homohuwelijk terugdraaien
http://www.expreszo.nl/headlines.php?id=750 Gays en moslims
worden vaak gediscrimineerd
http://www.expreszo.nl/headlines.php?id=749 Elton's gaydar
rinkelt bij bruidegom Minnelli
http://www.expreszo.nl/headlines.php?id=746 Lekkertje Drew
Barrymore liever met een vrouw?

This approach works fine when the web site is looking only at the User-Agent line, as you can
most easily control it with $browser->agent(...). If you were dealing with some other site
that insisted on seeing even more Netscape-like headers, that could be done, too:

my @netscape_like_headers = (
 'User-Agent' => 'Mozilla/4.76 [en] (Win98; U)',
 'Accept-Language' => 'en-US',
 'Accept-Charset' => 'iso-8859-1,*,utf-8',
 'Accept-Encoding' => 'gzip',
 'Accept' =>
 "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*",
);
my $response = $browser->get($url, @netscape_like_headers);

11.2.2 Referer

For some sites, that's not enough: they want to see that your Referer header value is something
they consider appropriate. A Referer header line signals the URL of a page that either linked to the
item you're requesting (as with) or inlines that image item (as with <img
src="url">).

For example, I am a big fan of the comic strip Dennis The Menace. I find it to be the truest realization
of deep satire, and I admire how its quality has kept up over the past 50 years, quite undeterred by the
retirement and eventual death of its auteur, the comic genius Hank Ketcham. And nothing brightens
my day more than laughing over the day's Dennis The Menace strip and hardcopying a really good one
now and then, so I can pin it up on my office door to amuse my colleagues and to encourage them to
visit the DTM web site. However, the server for the strip's image files doesn't want it to be inlined on
pages that aren't authorized to do so, so they check the Referer line. Unfortunately, they have
forgotten to allow for when there is no Referer line at all, such as happens when I try to hardcopy
the day's image file using my browser. But LWP comes to the rescue:

my $response = $browser->get(
 # The URL of the image:
 'http://pst.rbma.com/content/Dennis_The_Menace',

 'Referer' => # The URL where I see the strip:

 'http://www.sfgate.com/cgi-
bin/article.cgi?file=/comics/Dennis_The_Menace.dtl',
);
open(OUT, ">today_dennis.gif") || die $!;
binmode(OUT);
print OUT $response->content;
close(OUT);

By giving a Referer value that passes the image server's test for a good URL, I get to make a local
copy of the image, which I can then print out and put on my office door.

11.3 Authentication

HTTP Basic Authentication is the most common type of authentication supported at the level of
HTTP. The exchange works like this:

1. The browser makes a request for a URL.
2. The page is protected by Basic Authentication, so the server replies with a 401 Unauthorized

status code. The response has a WWW-Authenticate header that specifies the
authentication method ("basic") and the realm. "Realm" here is jargon for a string that
identifies the locked-off area, which the browser is about to use in the next step.

3. The browser displays an "enter your username and password for realm" dialog box. Figure
11-1 shows the dialog box for a part of www.unicode.org whose realm name is "Unicode-
MailList-Archives."

4. The browser requests the URL again, this time with an Authorization header that
encodes the username and password.

5. If the username and password are verified, the server sends the document in a normal
successful HTTP response. If the username and password aren't correct, we go back to step 2.

Figure 11-1. Authentication dialog box

11.3.1 Comparing Cookies with Basic Authentication

Like cookies, LWP implements HTTP Basic Authentication with attributes of an LWP::UserAgent
object. There are basic differences, however.

There's no such thing as an explicit HTTP error message that means "you needed to send me a proper
cookie, so try again!". The "Register Now!" page that the New York Times site returned is not an error
in any HTTP sense; as far as the browser is concerned, it asked for something, and got it.

LWP's interface for HTTP cookies and HTTP Basic Authentication is different. To get an
LWP::UserAgent browser object to implement cookies, one assigns it an object of class
HTTP::Cookies (or a subclass), which represents a little database of cookies that this browser knows
about. But there is no corresponding class for groups of username/password pairs, although I
informally refer to the set of passwords that a user agent can consult as its "key ring."

11.3.2 Authenticating via LWP

To add a username and password to a browser object's key ring, call the credentials method on
a user agent object:

$browser->credentials(
 'servername:portnumber',
 'realm-name',
 'username' => 'password'
);

In most cases, the port number is 80, the default TCP/IP port for HTTP. For example:

my $browser = LWP::UserAgent->new;
$browser->name('ReportsBot/1.01');

$browser->credentials(

 'reports.mybazouki.com:80',
 'web_server_usage_reports',
 'plinky' => 'banjo123'
);

my $response = $browser->get(
 'http://reports.mybazouki.com/this_week/'
);

One can call the credentials method any number of times, to add all the server-port-realm-
username-password keys to the browser's key ring, regardless of whether they'll actually be needed.
For example, you could read them all in from a datafile at startup:

my $browser = LWP::UserAgent->new();
if(open(KEYS, "< keyring.dat")) {
 while(<KEYS>) {
 chomp;
 my @info = split "\t", $_, -1;
 $browser->credential(@info) if @info == 4;
 };
 close(KEYS);
}

11.3.3 Security

Clearly, storing lots of passwords in a plain text file is not terribly good security practice, but the
obvious alternative is not much better: storing the same data in plain text in a Perl file. One could
make a point of prompting the user for the information every time,[2] instead of storing it anywhere at
all, but clearly this is useful only for interactive programs (as opposed to a programs run by crontab,
for example).

[2] In fact, Ave Wrigley wrote a module to do exactly that. It's not part of the LWP
distribution, but it's available in CPAN as LWP::AuthenAgent. The author describes it as "a
simple subclass of LWP::UserAgent to allow the user to type in username/password
information if required for authentication."

In any case, HTTP Basic Authentication is not the height of security: the username and password are
normally sent unencrypted. This and other security shortcomings with HTTP Basic Authentication are
explained in greater detail in RFC 2617. See the the preface for information on where to get a copy of
RFC 2617.

11.4 An HTTP Authentication Example:The Unicode Mailing
Archive

Most password-protected sites (whether protected via HTTP Basic Authentication or otherwise) are
that way because the sites' owners don't want just anyone to look at the content. And it would be a bit
odd if I gave away such a username and password by mentioning it in this book! However, there is
one well-known site whose content is password protected without being secret: the mailing list archive
of the Unicode mailing lists.

In an effort to keep email-harvesting bots from finding the Unicode mailing list archive while
spidering the Web for fresh email addresses, the Unicode.org sysadmins have put a password on that
part of their site. But to allow people (actual not-bot humans) to access the site, the site administrators
publicly state the password, on an unprotected page, at http://www.unicode.org/mail-arch/, which
links to the protected part, but also states the username and password you should use.

The main Unicode mailing list (called unicode) once in a while has a thread that is really very
interesting and you really must read, but it's buried in a thousand other messages that are not even
worth downloading, even in digest form. Luckily, this problem meets a tidy solution with LWP: I've
written a short program that, on the first of every month, downloads the index of all the previous
month's messages and reports the number of messages that has each topic as its subject.

The trick is that the web pages that list this information are password protected. Moreover, the URL
for the index of last month's posts is different every month, but in a fairly obvious way. The URL for
March 2002, for example, is:

http://www.unicode.org/mail-arch/unicode-ml/y2002-m03/

Deducing the URL for the month that has just ended is simple enough:

To be run on the first of every month...
use POSIX ('strftime');
my $last_month = strftime("y%Y-m%m", localtime(time - 24 * 60
* 60));
Since today is the first, one day ago (24*60*60 seconds) is
in
last month.
my $url = "http://www.unicode.org/mail-arch/unicode-
ml/$last_month/";

But getting the contents of that URL involves first providing the username and password and realm
name. The Unicode web site doesn't publicly declare the realm name, because it's an irrelevant detail
for users with interactive browsers, but we need to know it for our call to the credential method.
To find out the realm name, try accessing the URL in an interactive browser. The realm will be shown
in the authentication dialog box, as shown in Figure 11-1.

In this case, it's "Unicode-MailList-Archives," which is all we needed to make our request:

my $browser = LWP::UserAgent->new;
$browser->credentials(
 'www.unicode.org:80', # Don't forget the ":80"!
 # This is no secret...
 'Unicode-MailList-Archives',
 'unicode-ml' => 'unicode'
);
print "Getting topics for last month, $last_month\n",
 " from $url\n";
my $response = $browser->get($url);
die "Error getting $url: ", $response->status_line
 if $response->is_error;

If this fails (if the Unicode site's admins have changed the username or password or even the realm
name), that will die with this error message:

Error getting http://www.unicode.org/mail-arch/unicode-
ml/y2002-m03/:
401 Authorization Required at unicode_list001.pl line 21.

But assuming the authorization data is correct, the page is retrieved as if it were a normal, unprotected
page. From there, counting the topics and noting the absolute URL of the first message of each thread
is a matter of extracting data from the HTML source and reporting it concisely.

my(%posts, %first_url);
while(${ $response->content_ref }
 =~ m{(.*?)}g
 # Like: Klingon
) {
 my($url, $topic) = ($1,$2);

 # Strip any number of "Re:" prefixes.
 while($topic =~ s/^Re:\s+//i) {}

 ++$posts{$topic};
 use URI; # For absolutizing URLs...
 $first_url{$topic} ||= URI->new_abs($url, $response->base);
}

print "Topics:\n", reverse sort map # Most common first:
 sprintf("% 5s %s\n %s\n",
 $posts{$_}, $_, $first_url{$_}
), keys %posts;

Typical output starts out like this:

Getting topics for last month, y2002-m02
 from http://www.unicode.org/mail-arch/unicode-ml/y2002-m02/
Topics:
 86 Unicode and Security
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0021.html
 47 ISO 3166 (country codes) Maintenance Agency Web pages
move
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0390.html
 41 Unicode and end users
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0260.html
 27 Unicode Search Engines
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0360.html

 22 Smiles, faces, etc
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0275.html
 18 This spoofing and security thread
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0216.html
 16 Standard Conventions and euro
 http://www.unicode.org/mail-arch/unicode-ml/y2002-
m02/0418.html

This continues for a few pages.

Chapter 12. Spiders

So far we have focused on the mechanics of getting and parsing data off the Web, just a page here and
a page there, without much attention to the ramifications. In this section, we consider issues that arise
from writing programs that send more than a few requests to given web sites. Then we move on to
how to writing recursive web user agents, or spiders. With these skills, you'll be able to write
programs that automatically navigate web sites, from simple link checkers to powerful bulk-download
tools.

12.1 Types of Web-Querying Programs

Let's say your boss comes to you and says "I need you to write a spider." What does he mean by
"spider"? Is he talking about the simple one-page screen scrapers we wrote in earlier chapters? Or
does he want to extract many pages from a single server? Or maybe he wants you to write a new
Google, which attempts to find and download every page on the Web. Roughly speaking, there are
four kinds of programs that make requests to web servers:

Type One Requester

This program requests a couple items from a server, knowing ahead of time the URL of each.
An example of this is our program in Chapter 7 that requested just the front page of the BBC
News web site.

Type Two Requester

This program requests a few items from a server, then requests the pages to which those link
(or possibly just a subset of those). An example of this is the program we alluded to in
Chapter 11 that would download the front page of the New York Times web site, then
downloaded every story URL that appeared there.

Type Three Requester

This single-site spider requests what's at a given URL, finds links on that page that are on the
same host, and requests those. Then, for each of those, it finds links to things on the same
host, and so on, until potentially it visits every URL on the host.

Type Four Requester

This host-spanning spider requests what's at a given URL, finds links on that page that are
anywhere on the Web, and requests those. Then, for each of those, it finds links to things
anywhere on the Web (or at least things that are accessed via HTTP) and so on, until it visits
every URL on the Web, in theory.

From each of the above types to the next, there is an added bit of logic that radically changes the scope
and nature of the program.

A Type One Requester makes only a few requests. This is not normally a noticeable imposition on the
remote server, unless one of these requests is for a document that's very large or that has to be
dynamically generated with great difficulty.

A Type Two Requester places rather more burden on the remote server, simply because it generates
many more requests. For example, our New York Times story downloader in Chapter 11 downloads
not one or two pages, but several dozen. Because we don't want this to burden the Times's servers, we
considerately called sleep(2) after every request.

In fact, that probably makes our program much kinder to the remote server than a typical browser
would be. Typically, browsers create several simultaneous connections when downloading all the
various images, stylesheets, and applets they need to render a given web page. However, a typical
session with a graphical browser doesn't involve downloading so many different pages.

Note that with this sort of program, the scope of the program is clearly finite; it processes only the
presumably small number of links that appear on a few pages. So there is no real chance of the
program surprising you by requesting vastly more pages than you'd expect. For example, if you run
your program that downloads links off the New York Times's front page, it downloads just those and
that's it. If you run it, and the total count of downloaded pages is 45, you can assume that when you
run it tomorrow, it will be about that many: maybe 30, 60, maybe even 70, but not 700 or 70,000.
Moreover, when you see that the average length of each story downloaded is 30 KB, you can assume
that it's unlikely for any future story to be 100 KB, and extremely unlikely for any to be 10 MB.

But a Type Three Requester is the first kind that could potentially go seriously awry. Previously, we
could make safe assumptions about the nature of the pages whose links we were downloading. But
when a program (or, specifically, a spider, as we can freely call these sorts of recursive programs)
could request anything and everything on the server, it will be visiting pages we know nothing about,
and about which we can't make any assumptions. For example, suppose we request the main page of
our local paper's web site, and suppose that it links to a local events calendar for this month. If the
events calendar is dynamically generated from a database, this month's page probably has a link to
next month's page, and next month's to the month after, and so on forever, probably regardless of
whether each "next month" has any events to it. So if you wrote a spider that wouldn't stop until it had
requested every object on the server, for this server, it would never stop, because the number of pages
on the server is infinite. In webmaster jargon, these are referred to as "infinite URL spaces."

A Type Four Requester has all the problems of Type Threes, except that instead of running the risk of
annoying just the webmaster of the local paper, it can annoy any number of webmasters all over the
world. Just one of the many things that can go wrong with these kinds of host-spanning spiders is if it
sees a link to Yahoo!. It will follow that link, and then start recursing through all of Yahoo!, and
visiting every site to which Yahoo! links. Because these sorts of spiders demand typically immense
resources and are not "general purpose" by any means, we will not be discussing them.

If you are interested in this type of spider, you should read this chapter to understand the basic ideas of
single-site spiders, then read Totty et al's HTTP: The Definitive Guide (O'Reilly), which goes into
great detail on the special problems that await large-scale spiders.

12.2 A User Agent for Robots

So far in this book, we've been using one type of user-agent object: objects of the class
LWP::UserAgent. This is generally appropriate for a program that makes only a few undemanding
requests of a remote server. But for cases in which we want to be quite sure that the robot behaves
itself, the best way to start is by using LWP::RobotUA instead of LWP::UserAgent.

An LWP::RobotUA object is like an LWP::UserAgent object, with these exceptions:

• Instead of calling $browser = LWP::UserAgent->new(), you call:

$robot = LWP::RobotUA->new('botname/1.2',
'me@myhost.int')

Specify a reasonably unique name for the bot (with an X.Y version number) and an email
address where you can be contacted about the program, if anyone needs to do so.

• When you call $robot->get(...) or any other method that performs a request
(head(), post(), request(), simple_request()), LWP calls
sleep() to wait until enough time has passed since the last request was made to that
server.

• When you request anything from a given HTTP server using an LWP::RobotUA $robot
object, LWP will make sure it has consulted that server's robots.txt file, where the server's
administrator can stipulate that certain parts of his server are off limits to some or all bots. If
you request something that's off limits, LWP won't actually request it, and will return a
response object with a 403 (Forbidden) error, with the explanation "Forbidden by robots.txt."

For specifics on robots.txt files, see the documentation for the LWP module called
WWW::RobotRules, and also be sure to read http://www.robotstxt.org/wc/robots.html.

Besides having all the attributes of an LWP::UserAgent object, an LWP::RobotUA object has one
additional interesting attribute, $robot->delay($minutes), which controls how long this
object should wait between requests to the same host. The current default value is one minute. Note
that you can set it to a non-integer number of minutes. For example, to set the delay to seven seconds,
use $robot->delay(7/60).

So we can take our New York Times program from Chapter 11 and make it into a scrupulously well-
behaved robot by changing this one line:

my $browser = LWP::UserAgent->new();

to this:

use LWP::RobotUA;
my $browser = LWP::RobotUA->new('JamiesNYTBot/1.0',
 'jamie@newsjunkie.int' # my address
);
$browser->delay(5/60); # 5 second delay between requests

We may not notice any particular effect on how the program behaves, but it makes quite sure that the
$browser object won't perform its requests too quickly, nor request anything the Times's
webmaster thinks robots shouldn't request.

In new programs, I typically use $robot as the variable for holding LWP::RobotUA objects instead
of $browser. But this is a merely cosmetic difference; nothing requires us to replace every
$browser with $robot in the Times program when we change it from using an LWP::UserAgent
object to an LWP::RobotUA object.

You can freely use LWP::RobotUA anywhere you could use LWP::UserAgent, in a Type One or
Type Two spider. And you really should use LWP::RobotUA as the basis for any Type Three or Type
Four spiders. You should use it not just so you can effortlessly abide by robots.txt rules, but also so
that you don't have to remember to write in sleep statements all over your programs to keep it from
using too much of the remote server's bandwidth—or yours!

12.3 Example: A Link-Checking Spider

So far in the book, we've produced little single-use programs that are for specific tasks. In this section,
we will diverge from that approach by walking through the development of a Type Three Requester
robot whose internals are modular enough that with only minor modification, it could be used as any
sort of Type Three or Type Four Requester.

12.3.1 The Basic Spider Logic

The specific task for our program is checking all the links in a given web site. This means spidering
the site, i.e., requesting every page in the site. To do that, we request a page in the site (or a few
pages), then consider each link on that page. If it's a link to somewhere offsite, we should just check it.
If it's a link to a URL that's in this site, we will not just check that the URL is retrievable, but in fact
retrieve it and see what links it has, and so on, until we have gotten every page on the site and checked
every link.

So, for example, if I start the spider out at http://www.mybalalaika.com/oggs/, it will request that page,
get back HTML, and analyze that HTML for links. Suppose that page contains only three links:

http://bazouki-consortium.int/
http://www.mybalalaika.com/oggs/studio_credits.html
http://www.mybalalaika.com/oggs/plinky.ogg

We can tell that the first URL is not part of this site; in fact, we will define "site" in terms of URLs, so
a URL is part of this site if starts with this site's URL. So because http://bazouki-consortium.int
doesn't start with http://www.mybalalaika.com/oggs/, it's not part of this site. As such, we can check it
(via an HTTP HEAD request), but we won't actually look at its contents for links. However, the
second URL, which is http://www.mybalalaika.com/oggs/studio_credits.html, actually does start with
http://www.mybalalaika.com/oggs/, so it's part of this site and can be retrieved and scanned for links.
Similarly, the third link, http://www.mybalalaika.com/oggs/plinky.ogg, does start with
http://www.mybalalaika.com/oggs/, so it's part of this site and can be retrieved, and its HTML checked
for links.

But I happen to know that http://www.mybalalaika.com/oggs/plinky.ogg is a 90-megabyte Ogg Vorbis
(compressed audio) file of a 50-minute long balalaika solo, and it would be a very bad idea for our
user agent to go getting this file, much less to try scanning it as HTML! So the way we'll save our
robot from this bother is by having it HEAD any URLs before it GETs them. If HEAD reports that the
URL is gettable (i.e., doesn't have an error status, nor a redirect) and that its Content-Type
header says it's HTML (text/html), only then will we actually get it and scan its HTML for links.

We could always hardcode a list of strings such as .gif, .jpg, etc., including .ogg, such that any URL
ending in any such string will be assumed to not be HTML. However, we could never know that our
list is complete, so we must carefully avoid the possibility of ever downloading a massive binary file
that our suffix list just didn't happen to catch.

Now, what to do if we check (or try to get) a URL, and we get an error status? We will have to make
note of this in some way. Now, at bare minimum we could do something like have a hash called
%notable_url_error, and when we see an error, we could do:

$notable_url_error{$url} = $response->status_code;

In fact, we will be a bit more ambitious in our program, by also making note of what links to what, so
that in the end, instead of saying "something links to http://somebadurl.int, but it's 404 Not Found,"
we can list the URLs that link to it, so that those links can be fixed.

Incidentally, when we get http://www.mybalalaika.com/oggs/studio_credits.html and scan its HTML,
suppose it contains a link to http://www.mybalalaika.com/oggs/. We shouldn't go and request that
URL, because we've already been there. So we'll need to keep track of what we've already seen. This
is as simple as having a hash %seen_url_before, and when we see a URL, if we see
$seen_url_before{$url} is true, we'll skip it. But if it's false, we know we haven't dealt
with this URL before, so we can set $seen_url_before{$url} = 1 and go deal with it, for
what we can be sure will be the only time this session.

12.3.2 Overall Design in the Spider

Now that we've settled on the basic logic behind the spider, we can start coding. For example, our idea
of how to process a URL is expressed as this simple routine:

sub process_url {
 my $url = $_[0];
 if(near_url($url)) { process_near_url($url) }
 else { process_far_url($url) }
 return;
}

This is the first of the two dozen routines (mostly small) that make up this spider framework, and
clearly it requires us to write three more routines, near_url(), process_near_url(),
and process_far_url(). But before we go further, we must consider the question of how we
would interact with the program. Ideally, we can just write it as a command-line utility that we start up
and let run, and in the end it will email us. So, in theory, we could call it like so:

% thatdarnedbot http://mybazouki.com/ | mail $USER &

Then we don't have to think about it again until the program finishes and the report it generates comes
to our mailbox. But that is like tightrope-walking without a net, because suppose we get email from
someone saying "Hey, wassamatta you? A bot from your host just spent a solid hour hammering my
server, checking the same links over and over again! Fix it!" But if all we have is a bad links report,
we'll have no idea why the bot visited his site, whether it did indeed request "the same links" over and
over, or even what URLs it visited (aside from the ones we see in our bad links report), so we'd have
no idea how to fix the problem.

To avoid that situation, we must build logging into the spider right from the beginning. We'll
implement this with two basic routines: say(), used for important messages, and mutter(),
used for less important messages. When we have a part of the program call say(), like so:

say("HEADing $url\n");

That is a message that we'll save in a log file, as well as write to STDOUT for the edification of the
user who's watching the process. We can call mutter(), like so:

mutter(" That was hit #$hit_count\n");

That message will be saved to the log file (in case we need it), but isn't considered important enough
to send to STDOUT, unless of course the user is running this program with a switch that means "say
everything to STDOUT, no matter how trivial."

And because it's helpful to know not just what happened but when, we'll make say() and
mutter() emit a timestamp, unless it's the same time as the last thing we said or muttered. Here
are the routines:

my $last_time_anything_said;
sub say {
 # Add timestamps as needed:
 unless(time() == ($last_time_anything_said || 0)) {
 $last_time_anything_said = time();
 unshift @_, "[T$last_time_anything_said = " .
 localtime($last_time_anything_said) . "]\n";
 }
 print LOG @_ if $log;
 print @_;
}

my $last_time_anything_muttered;
sub mutter {
 # Add timestamps as needed:
 unless(time() == ($last_time_anything_muttered || 0)) {
 $last_time_anything_muttered = time();
 unshift @_, "[T$last_time_anything_muttered = " .
 localtime($last_time_anything_muttered) . "]\n";
 }
 print LOG @_ if $log;
 print @_ if $verbose;
}

This relies on a flag $log (indicating whether we're logging), a filehandle LOG (open on our log file,
if we are logging), and a flag $verbose that signals whether mutter messages should go to
STDOUT too. These variables will be set by code that you'll see in the complete listing at the end of
this chapter, which simply gets those values from @ARGV using the standard Perl module Getopt::Std.

With those two logging routines in place, we can return to our first substantial routine, here repeated:

sub process_url {
 my $url = $_[0];
 if (near_url($url)) { process_near_url($url) }

 else { process_far_url($url) }
 return;
}

Not only does this implicate near_url(), process_near_url(), and
process_far_url(), but it also begs the question: what will actually call
process_url()? We will implement the basic control of this program in terms of a schedule (or
queue) of URLs that need to be processed. Three things need to be done with the schedule: we need a
way to see how many entries there are in it (at least so we can know when it's empty); we need to be
able to pull a URL from it, to be processed now; and we need a way to feed a URL into the schedule.
Call those functions schedule_count(), next_scheduled_url(), and
schedule($url) (with code that we'll define later on), and we're in business. We can now write
the main loop of this spider:

my $QUIT_NOW;
 # a flag we can set to indicate that we stop now!

sub main_loop {
 while(
 schedule_count()
 and $hit_count < $hit_limit
 and time() < $expiration
 and ! $QUIT_NOW
) {
 process_url(next_scheduled_url());
 }
 return;
}

This assumes we've set $hit_limit (a maximum number of hits that this bot is allowed to
perform on the network) and $expiration (a time after which this bot must stop running), and
indeed our @ARGV processing will get those from the command line. But once we know that's the
program's main loop, we know that the program's main code will just be the processing of switches in
@ARGV, followed by this code:

initialize();
process_starting_urls(@ARGV);
main_loop();
report() if $hit_count;
say("Quitting.\n");
exit;

And from this point on, the design of the program is strictly top-down stepwise refinement, just
fleshing out the details of the remaining routines that we have mentioned but not yet defined.

12.3.3 HEAD Response Processing

Consider our basic routine, repeated again:

sub process_url {
 my $url = $_[0];
 if(near_url($url)) { process_near_url($url) }
 else { process_far_url($url) }
 return;
}

The first thing this needs in a function that, given a URL, can tell whether it's "near" or not, i.e.,
whether it's part of this site. Because we've decided that a URL is part of this site only if it starts with
any of the URLs with which we started this program, just as
http://www.mybalalaika.com/oggs/studio_credits.html starts with http://www.mybalalaika.com/oggs/,
but http://bazouki-consortium.int/ doesn't. This is a simple matter of using substr():

my @starting_urls;

sub near_url { # Is the given URL "near"?
 my $url = $_[0];
 foreach my $starting_url (@starting_urls) {
 if(substr($url, 0, length($starting_url))
 eq $starting_url
 # We assume that all URLs are in canonical form!
) {
 mutter(" So $url is near\n");
 return 1;
 }
 }
 mutter(" So $url is far\n");
 return 0;
}

We will have to have fed things into @starting_urls first, and we can do that in the
process_starting_urls() routine that gets called right before we start off the program's
main loop. That routine needn't do anything more than this:

sub process_starting_urls {
 foreach my $url (@_) {
 my $u = URI->new($url)->canonical;
 schedule($u);
 push @starting_urls, $u;
 }
 return;
}

Note that we feed URLs through the canonical method, which converts a URL to its single most
"proper" form; i.e., turning any capital letters in the hostname into lowercase, removing a redundant
:80 port specification at the end of the hostname, and so on. We'll use the canonical method
throughout this program when dealing with URLs. If we had failed to use the canonical method,
we would, for example, not know that http://nato.int, http://NATO.int/ and

http://nato.int:80/ all certainly denote the same thing, in that they all translate to exactly
the same request to exactly the same server.

To get process_url() fleshed out fully, we need to define process_near_url($url)
and process_far_url($url). We'll start with the first and simplest one. Processing a "far"
URL (one that's not part of any site we're spidering, but is instead a URL we're merely checking the
validity of), is a simple matter of HEADing the URL.

my $robot;

sub process_far_url {
 my $url = $_[0];
 say("HEADing $url\n");
 ++$hit_count;
 my $response = $robot->head($url, refer($url));
 mutter(" That was hit #$hit_count\n");
 consider_response($response); # that's all we do!
 return;
}

The minor routine refer($url) should generate a Referer header for this request (or no
header at all, if none can be generated). This is so if our request produces a 404 and this shows up in
the remote server's hit logs, that server's webmaster won't be left wondering "What on Earth links to
that broken URL?" This routine merely checks the hash-of-hashes
$points_to{$url}{$any_from_url}, and either returns empty list (for no header) if
there's no entry for $url, or Referer => $some_url if there is an entry.

my %points_to;

sub refer {
 # Generate a good Referer header for requesting this URL.
 my $url = $_[0];
 my $links_to_it = $points_to{$url};
 # the set (hash) of all things that link to $url
 return() unless $links_to_it and keys %$links_to_it;

 my @urls = keys %$links_to_it; # in no special order!
 mutter " For $url, Referer => $urls[0]\n";
 return "Referer" => $urls[0];
}

The more important routine consider_response() is where we will have to mull over the
results of process_far_url()'s having headed the given URL. This routine should decide
what HTTP statuses are errors, and not all errors are created equal. Some are merely "405 Method Not
Allowed" errors from servers or CGIs that don't understand HEAD requests; these apparent errors
should presumably not be reported to the user as broken links. We could just define this routine like
so:

sub consider_response {

 # Return 1 if it's successful, otherwise return 0
 my $response = $_[0];
 mutter(" ", $response->status_line, "\n");
 return 1 if $response->is_success;
 note_error_response($response);
 return 0;
}

We then further break down the task of deciding what errors are worthy of reporting and delegate that
to a note_error_response() routine:

my %notable_url_error; # URL => error messageS

sub note_error_response {
 my $response = $_[0];
 return unless $response->is_error;

 my $code = $response->code;
 my $url = URI->new($response->request->uri)->canonical;

 if($code == 404 or $code == 410 or $code == 500) {
 mutter(sprintf "Noting {%s} error at %s\n",
 $response->status_line, $url);
 $notable_url_error{$url} = $response->status_line;
 } else {
 mutter(sprintf "Not really noting {%s} error at %s\n",
 $response->status_line, $url);
 }
 return;
}

This note_error_response() only really notes (in %notable_url_error) error
messages that are 404 "Not Found", 410 "Gone", or 500 (which could be any number of things, from
LWP having been unable to DNS the hostname, to the server actually reporting a real 500 error on a
CGI). Among the errors that this is meant to avoid reporting is the 403 "Forbidden" error, which is
what LWP::RobotUA generates if we try accessing a URL that we are forbidden from accessing by
that server's robots.txt file. In practice, if you base a spider on this code, you should routinely consult
the logs (as generated by the above calls to mutter) to see what errors are being noted, versus what
kinds of errors are being "not really noted." This is an example of how each will show up in the log:

[T1017138941 = Tue Mar 26 03:35:41 2002]
 For http://www.altculture.com/aentries/a/absolutely.html,
Referer \
 => http://www.speech.cs.cmu.edu/~sburke/
[T1017139042 = Tue Mar 26 03:37:22 2002]
 That was hit #10
 500 Can't connect to www.altculture.com:80 (Timeout)
Noting {500 Can't connect to www.altculture.com:80 (Timeout)}
error \

 at http://www.altculture.com/aentries/a/absolutely.html
[T1017139392 = Tue Mar 26 03:43:12 2002]
HEADing http://www.amazon.com/exec/obidos/ASIN/1565922840
 For http://www.amazon.com/exec/obidos/ASIN/1565922840,
Referer \
 => http://www.speech.cs.cmu.edu/~sburke/pub/perl.html
[T1017139404 = Tue Mar 26 03:43:24 2002]
That was hit #51
405 Method Not Allowed
Not really noting {405 Method Not Allowed} error at \
 http://www.amazon.com/exec/obidos/ASIN/1565922840

12.3.4 Redirects

Implicit in our consider_request() function, above, is the idea that something either
succeeded or was an error. However, there is an important and frequent middle-ground in HTTP status
codes: redirection status codes.

Normally, these are handled internally by the LWP::UserAgent/LWP::RobotUA object, assuming that
we have left that object with its default setting of following redirects wherever possible. But do we
want it following redirects at all? There's a big problem with such automatic redirect processing: if we
request a URL with options appropriate for a "far" URL, and it redirects to a URL that's part of our
site, we've done the wrong thing. Or, going the other way, if we GET a URL that's part of our site, and
it redirects to a "far" URL, we'll have broken our policy of never GETting "far" URLs.

The solution is to turn off automatic redirect following for the $robot that we use for HEADing and
GETting (by calling $robot->requests_redirectable([]) when we initialize it), and
to deal with redirects ourselves, in an expanded consider_response() routine, like so:

sub consider_response {
 # Return 1 if it's successful, otherwise return 0
 my $response = $_[0];
 mutter(" ", $response->status_line, "\n");
 return 1 if $response->is_success;

 if($response->is_redirect) {
 my $to_url = $response->header('Location');
 if(defined $to_url and length $to_url and
 $to_url !~ m/\s/
) {
 my $from_url = $response->request->uri;
 $to_url = URI->new_abs($to_url, $from_url);
 mutter("Noting redirection\n from $from_url\n",
 " to $to_url\n");
 note_link_to($from_url => $to_url);
 }
 } else {
 note_error_response($response);
 }

 return 0;
}

By now we have completely fleshed out process_url() and everything it calls, except for
process_near_url() and the less-important note_link_to() routine. Processing
"near" (in-site) URLs is just an elaboration of what we do to "far" URLs. As discussed earlier, we will
HEAD this URL, and if it's a successful URL (as shown by the return value of
consider_response(), remember!), and if it will contain HTML, we GET it and scan its
content for links. The fully defined function seems long, but only because of our many calls to say(
) and mutter(), and all our sanity checking, such as not bothering to GET the URL if the HEAD
actually returned content, as happens now and then.

sub process_near_url {
 my $url = $_[0];
 mutter("HEADing $url\n");
 ++$hit_count;
 my $response = $robot->head($url, refer($url));
 mutter(" That was hit #$hit_count\n");
 return unless consider_response($response);

 if($response->content_type ne 'text/html') {
 mutter(" HEAD-response says it's not HTML! Skipping ",
 $response->content_type, "\n");
 return;
 }
 if(length ${ $response->content_ref }) {
 mutter(" Hm, that had content! Using it...\n");
 say("Using head-gotten $url\n");
 } else {
 mutter("It's HTML!\n");
 say("Getting $url\n");
 ++$hit_count;
 $response = $robot->get($url, refer($url));
 mutter(" That was hit #$hit_count\n");
 return unless consider_response($response);
 }
 if($response->content_type eq 'text/html') {
 mutter(" Scanning the gotten HTML...\n");
 extract_links_from_response($response);
 } else {
 mutter(" Skipping the gotten non-HTML (",
 $response->content_type, ") content.\n");
 }
 return;
}

All the routines this uses are already familiar, except extract_links_from_response(
).

12.3.5 Link Extraction

Our extract_links_from_response() routine has to take a successful
HTTP::Response object containing HTML and extract the URLs from the links in it. But in practice,
"link" can be an imprecise term. Clearly, this constitutes a link:

I like pie!

But what about the area element here?

<map>
 ...
 <area shape="rect" href="pie.html" coords="0,0,80,21">
 ...
</map>

Or what about the frame element here?

<frameset rows="*,76">
 ...
 <frame src="pie.html" name="eat_it">
 ...
</frameset>

And what about the background attribute value here?

<body bgcolor="#000066" background="images/bg.gif" ... >

You will have to decide for each kind of spider task what sort of links it should be interested in and
implement a different extract_links_from_response() accordingly. For purposes of
simplicity, we'll consider only tags to be links. This is easy to implement using
the HTML::TokeParser approach we covered in Chapter 7 and using the URI class we covered in
Chapter 4.

use HTML::TokeParser;
use URI;

sub extract_links_from_response {
 my $response = $_[0];

 my $base = URI->new($response->base)->canonical;
 # "canonical" returns it in the one "official" tidy form

 my $stream = HTML::TokeParser->new($response->content_ref
);
 my $page_url = URI->new($response->request->uri);

 mutter("Extracting links from $page_url\n");

 my($tag, $link_url);
 while($tag = $stream->get_tag('a')) {
 next unless defined($link_url = $tag->[1]{'href'});
 next if $link_url =~ m/\s/; # If it's got whitespace, it's
a bad URL.
 next unless length $link_url; # sanity check!

 $link_url = URI->new_abs($link_url, $base)->canonical;
 next unless $link_url->scheme eq 'http'; # sanity

 $link_url->fragment(undef); # chop off any "#foo" part
 note_link_to($page_url => $link_url)
 unless $link_url->eq($page_url); # Don't note links to
itself!
 }
 return;
}

This does lots of sanity checking on the href attribute value but ends up feeding to
note_link_to() new (absolute) URI objects for URLs such as http://bazouki-consortium.int/
or http://www.mybalalaika.com/oggs/studio_credits.html, while skipping non-HTTP URLs such as
mailto:info@mybalalaika.com, as well as invalid URLs that might arise from parsing bad HTML.

This is about as complex as our spider code gets, and it's easy from here on.

12.3.6 Fleshing Out the URL Scheduling

So far we've used a note_link_to() routine twice. That routine need only do a bit of
accounting to update the %points_to hash we mentioned earlier and schedule this URL to be
visited.

sub note_link_to {
 my($from_url => $to_url) = @_;
 $points_to{ $to_url }{ $from_url } = 1;
 mutter("Noting link\n from $from_url\n to $to_url\n");
 schedule($to_url);
 return;
}

That leaves routines such as schedule() left to write. As a reminder, three things need to be
done with the schedule (as we're calling the big set of URLs that need to be visited). We need a way to
see how many entries there are in it with schedule_count() (at least so main_loop()
can know when it's empty). We'll need to pull a URL from the schedule with
next_scheduled_url(), so main_loop() can feed it to process_url(). And we
need a way to feed a URL into the schedule, with schedule($url), as called from
note_link_to() and process_starting_urls().

A simple Perl array is a perfectly sufficient data structure for our schedule, so we can write
schedule_count() like so:

my @schedule;
sub schedule_count { return scalar @schedule }

The implementation of next_scheduled_url() depends on exactly what we mean by
"next." If our @schedule is a proper stack, scheduling a URL means we push @schedule,
$url, and next_scheduled_url() is just a matter of $url = pop @schedule. If
our @schedule is a proper queue, then scheduling a URL means we push @schedule,
$url, and next_scheduled_url() is just a matter of $url = shift @schedule.

Both of these approaches make our spider quite predictable, in the sense that when run on the same
site, it will always do the same things in the same order. This could theoretically be an advantage for
debugging, and would be a necessary feature if we were trying to debug without the benefit of the
logging we've written into the spider.

However, that predictability is also a problem: if the spider happens on a page with dozens of slow-
responding URLs, it could spend the rest of its life trying to check those links; i.e., until
main_loop() quits because $hit_count reaches $hit_limit or because time()
reaches $expiration. In practice, this problem is greatly alleviated (although not completely
eliminated) by pulling URLs not from the beginning or end of @schedule, but instead from a
random point in it:

sub next_scheduled_url {
 my $url = splice @schedule, rand(@schedule), 1;

 mutter("\nPulling from schedule: ", $url || "[nil]",
 "\n with ", scalar(@schedule),
 " items left in schedule.\n");
 return $url;
}

This leaves us with the schedule($url) routine to flesh out. It would be as simple as:

sub schedule {
 my $url = $_[0];
 push @schedule, URI->new($url);
 return;
}

However, we don't do much sanity checking on URLs everywhere else, so we need to do lots of it all
here. First off, we need to make sure we don't schedule a URL that we've scheduled before. Not only
does this keep there from being duplicates in @schedule at any one time, it means we never
process the same URL twice in any given session.

Second off, we want to skip non-HTTP URLs, because other schemes (well, except HTTPS) aren't
HEADable and don't have MIME types, two things our whole spider logic depends on. Moreover, we
probably want to skip URLs that have queries (http://foo.bar/thing?baz) because those are usually
CGIs, which typically don't understand HEAD requests. Moreover, we probably want to skip HTTP
URLs that inexplicably have userinfo components (http://joeschmo@foo.bar/thing), which are
typically typos for FTP URLs, besides just being bizarre.

We also want to regularize the hostname, so we won't think http://www.Perl.com/,
http://www.perl.com/, and http://www.perl.com./ are all different hosts, to be visited separately. We
also want to skip URLs that are too "deep," such as
http://www.foo.int/docs/docs/docs/docs/docs/docs/about.html, which are typically a sign of a wild
symlink or some other similar problem. We also want to skip unqualified hostnames, such as
http://www/ or http://mailhost/, and URLs with path weirdness, such as http://thing.com/./././//foo.html.
Then we chop off any #foo fragment at the end of the URL, and finally add the URL to @schedule
if it's new.

All that sort of sanity checking adds up to this:

my %seen_url_before;

sub schedule {
 # Add these URLs to the schedule
 foreach my $url (@_) {
 my $u = ref($url) ? $url : URI->new($url);
 $u = $u->canonical; # force canonical form

 next unless 'http' eq ($u->scheme || '');
 next if defined $u->query;
 next if defined $u->userinfo;

 $u->host(regularize_hostname($u->host()));
 return unless $u->host() =~ m/\./;

 next if url_path_count($u) > 6;
 next if $u->path =~ m<//> or $u->path =~ m</\.+(/|$)>;

 $u->fragment(undef);

 if($seen_url_before{ $u->as_string }++) {
 mutter(" Skipping the already-seen $u\n");
 } else {
 mutter(" Scheduling $u\n");
 push @schedule, $u;
 }
 }
 return;
}

All we need is the routine that regularizes a given hostname:

sub regularize_hostname {
 my $host = lc $_[0];
 $host =~ s/\.+/\./g; # foo..com => foo.com
 $host =~ s/^\.//; # .foo.com => foo.com
 $host =~ s/\.$//; # foo.com. => foo.com
 return 'localhost' if $host =~ m/^0*127\.0+\.0+\.0*1$/;
 return $host;

}

then a routine that counts the number of /-separated parts in the URL path:

sub url_path_count {
 # Return 4 for "http://foo.int/fee/fie/foe/fum"
 # 1 2 3 4
 my $url = $_[0];
 my @parts = $url->path_segments;
 shift @parts if @parts and $parts[0] eq '';
 pop @parts if @parts and $parts[-1] eq '';
 return scalar @parts;
}

12.3.7 The Rest of the Code

That's a fully functioning checker-spider—at least once you add in the boring switch processing,
initialize(), and the report() that dumps the contents of
%notable_url_error, which are as follows:

use strict;
use warnings;
use URI;
use LWP;

Switch processing:
my %option;
use Getopt::Std;
getopts('m:n:t:l:e:u:t:d:hv', \%option) || usage_quit(1);
usage_quit(0) if $option{'h'} or not @ARGV;

sub usage_quit {
 # Emit usage message, then exit with given error code.
 print <<"END_OF_MESSAGE"; exit($_[0] || 0);
Usage:
$0 [switches] [urls]
 This will spider for bad links, starting at the given URLs.

Switches:
 -h display this help message
 -v be verbose in messages to STDOUT (default off)
 -m 123 run for at most 123 minutes. (default 20)
 -n 456 cause at most 456 network hits. (default 500)
 -d 7 delay for 7 seconds between hits. (default 10)
 -l x.log log to text file x.log. (default is to not log)
 -e y\@a.b set bot admin address to y\@a.b (no default!)
 -u Xyz set bot name to Xyz. (default: Verifactrola)
 -t 34 set request timeout to 34 seconds. (default 15)

END_OF_MESSAGE
}

my $expiration = ($option{'m'} || 20) * 60 + time();
my $hit_limit = $option{'h'} || 500;
my $log = $option{'l'};
my $verbose = $option{'v'};
my $bot_name = $option{'u'} || 'Verifactrola/1.0';
my $bot_email = $option{'e'} || '';
my $timeout = $option{'t'} || 15;
my $delay = $option{'d'} || 10;
die "Specify your email address with -e\n"
 unless $bot_email and $bot_email =~ m/\@/;

my $hit_count = 0;
my $robot; # the user-agent itself

Then the top-level code we've already seen:
initialize();
process_starting_urls(@ARGV);
main_loop();
report() if $hit_count;
say("Quitting.\n");
exit;

sub initialize {
 init_logging();
 init_robot();
 init_signals();
 return;
}

sub init_logging {
 my $selected = select(STDERR);
 $| = 1; # Make STDERR unbuffered.
 if($log) {
 open LOG, ">>$log" or die "Can't append-open $log: $!";
 select(LOG);
 $| = 1; # Make LOG unbuffered
 }
 select($selected);
 print "Logging to $log\n" if $log;
 return;
}

sub init_robot {
 use LWP::RobotUA;
 $robot = LWP::RobotUA->new($bot_name, $bot_email);
 $robot->delay($delay/60); # "/60" to do seconds->minutes

 $robot->timeout($timeout);
 $robot->requests_redirectable([]);
 # don't follow any sort of redirects
 $robot->protocols_allowed(['http']); # disabling all others
 say("$bot_name ($bot_email) starting at ",
scalar(localtime), "\n");
 return;
}

sub init_signals { # catch control-C's
 $SIG{'INT'} = sub { $QUIT_NOW = 1; return;};
 # That might not be emulated right under MSWin.
 return;
}

sub report { # This that gets run at the end.
 say(
 "\n\nEnding at ", scalar(localtime),
 " after ", time() - $^T,
 "s of runtime and $hit_count hits.\n\n",
);
 unless(keys %notable_url_error) {
 say("\nNo bad links seen!\n");
 return;
 }

 say("BAD LINKS SEEN:\n");
 foreach my $url (sort keys %notable_url_error) {
 say("\n$url\n Error: $notable_url_error{$url}\n");
 foreach my $linker (sort keys %{ $points_to{$url} }) {
 say(" < $linker\n");
 }
 }
 return;
}

And that's all of it!

12.4 Ideas for Further Expansion

In its current form, this bot is a passable implementation framework for a Type Three Requester spider
that checks links on typical HTML web sites. In actual use, you would want to fine tune its heuristics.
For example, if you want to check the validity of lots of URLs to sites that don't implement HEAD,
you'd want to improve on the logic that currently just considers those URLs a lost cause; or you might
want to add code that will skip any attempt at HEADing a URL on a host that has previously
responded to any HEAD request with a "Method Not Supported" error, or has otherwise proven
uncooperative.

If you wanted the spider to check large numbers of URLs, or spider a large site, it might be prudent to
have some of its state saved to disk (specifically @schedule, %seen_url_before,
%points_to, and %notable_url_error); that way you could stop the spider, start it later,
and have it resume where it left off, to avoid wastefully duplicating what it did the last time. It would
also be wise to have the spider enforce some basic constraints on documents and requests, such as
aborting any HTML transfer that exceeds 200K or that seems to not actually be HTML, or by having
the spider put a maximum limit on the number of times it will hit any given host (see the
no_visits() method mentioned in the LWP::RobotUA documentation, and specifically
consider $bot->no_visits($url->host_port)).

Moreover, the spider's basic behavior could be altered easily by changing just a few of the routines.
For example, to turn it into a robot that merely checks URLs that you give it on the command line,
you need only redefine one routine like this:

sub near_url { 0; } # no URLs are "near", i.e., spiderable

Conversely, to turn it into a pure Type Four Requester spider that recursively looks for links to which
any web pages it finds link, all it takes is this:

sub near_url { 1; } # all URLs are "near", i.e., spiderable

But as pointed out earlier in this chapter, that is a risky endeavor. It requires careful monitoring and
log analysis, constant adjustments to its response-processing heuristics, intelligent caching, and other
matters regrettably beyond what can be sufficiently covered in this book.

Appendix A. LWP Modules

While the text of this book has covered the LWP modules that you need to know about to get things
done, there are many additional modules in LWP. Most of them are behind the scenes or have limited
use that we couldn't spare the space to discuss. But if you want to further your knowledge of LWP's
internals, here's a roadmap to get you started.

These are the LWP modules, listed alphabetically, from the CPAN distributions most current at time
of writing, libwww-perl v5.64, URI v1.18, HTML-Parser v3.26, HTML-Tree v3.11, and HTML-
Format v1.23. Especially noteworthy modules have an "*" in front of their names.

Module Description
File::Listing Module for parsing directory listings. Used by Net::FTP.

HTML::Form Class for objects representing HTML forms.

HTML::FormatPS
Class for objects that can render HTML::TreeBuilder tree
contents as PostScript.

HTML::Formatter
Internal base class for HTML::FormatPS and
HTML::FormatText.

*HTML::FormatText
Class for objects that can render HTML::TreeBuilder tree
contents as plain text.

*HTML::Entities
Useful module providing functions that &-encode/decode strings
(such as C. & E. Brontë to and from C. & E.
Brontë).

HTML::Filter
Deprecated class for HTML parsers that reproduce their input by
default.

HTML::HeadParser Parse <HEAD> section of an HTML document.

HTML::LinkExtor Class for HTML parsers that parse out links.

HTML::PullParser Semi-internal base class used by HTML::TokeParser.

*HTML::TokeParser Friendly token-at-a-time HTML pull-parser class.

HTML::Parser
Base class for HTML parsers; used by the friendlier
HTML::TokeParser and HTML::TreeBuilder.

HTML::AsSubs
Semi-deprecated module providing functions that each construct
an HTML::Element object.

*HTML::Element Class for objects that each represent an HTML element.

HTML::Parse
Deprecated module that provides functions accessing
HTML::TreeBuilder.

HTML::Tree
Module that exists just so you can run perldoc HTML-
Tree.

*HTML::TreeBuilder
Class for objects representing an HTML tree into which you can
parse source.

*HTTP::Cookies Class for objects representing databases of cookies.

HTTP::Daemon Base class for writing HTTP server daemons.

HTTP::Date
Module for date conversion routines. Used by various LWP
protocol modules.

HTTP::Headers Class for objects representing the group of headers in an

HTTP::Response or HTTP::Request object.

HTTP::Headers::Auth
Experimental/internal for improving HTTP::Headers's
authentication support.

HTTP::Headers::ETag
Experimental/internal module adding HTTP ETag support to
HTTP::Headers.

HTTP::Headers::Util
Module providing string functions used internally by various
other LWP modules.

*HTTP::Message
Base class for methods common to HTTP::Response and
HTTP::Request.

HTTP::Negotiate
Module implementing an algorithm for content negotiation. Not
widely used.

HTTP::Request
Class for objects representing a request that carried out with an
LWP::UserAgent object.

HTTP::Request::Common
Module providing functions used for constructing common kinds
of HTTP::Request objects.

*HTTP::Response
Class for objects representing the result of an HTTP::Request
that was carried out.

*HTTP::Status
Module providing functions and constants involving HTTP
status codes.

*LWP

Module that exists merely so you can say "use LWP" and have
all the common LWP modules (notably LWP::UserAgent,
HTTP::Request, and HTTP::Response). Saying "use
LWP5.64" also asserts that the current LWP distribution had
better be Version 5.64 or later. The module also contains
generous documentation.

LWP::Authen::Basic
Module used internally by LWP::UserAgent for doing common
("Basic") HTTP authentication responses.

LWP::Authen::Digest
Module used internally by LWP::UserAgent for doing less-
common HTTP Digest authentication responses.

LWP::ConnCache
Class used internally by some LWP::Protocol::protocol modules
to reuse socket connections.

*LWP::Debug
Module for routines useful in tracing how LWP performs
requests.

LWP::MediaTypes
Module used mostly internally for guessing the MIME type of a
file or URL.

LWP::MemberMixin Base class used internally for accessing object attributes.

LWP::Protocol
Mostly internal base class for accessing and managing LWP
protocols.

LWP::Protocol::data
Internal class that handles the new data: URL scheme (RFC
2397).

LWP::Protocol::file Internal class that handles the file: URL scheme.

LWP::Protocol::ftp Internal class that handles the ftp: URL scheme.

LWP::Protocol::GHTTP
Internal class for handling http: URL scheme using the
HTTP::GHTTP library.

LWP::Protocol::gopher Internal class that handles the gopher: URL scheme.

LWP::Protocol::http Internal class that normally handles the http: URL scheme.

LWP::Protocol::http10
Internal class that handles the http: URL scheme via just
HTTP v1.0 (without the 1.1 extensions and features).

LWP::Protocol::https
Internal class that normally handles the https: URL scheme,
assuming you have an SSL library installed.

LWP::Protocol::https10
Internal class that handles the https: URL scheme, if you
don't want HTTP v1.1 extensions.

LWP::Protocol::mailto
Internal class that handles the mailto: URL scheme; yes, it
sends mail!

LWP::Protocol::nntp
Internal class that handles the nntp: and news: URL
schemes.

LWP::Protocol::nogo
Internal class used in handling requests to unsupported
protocols.

*LWP::RobotUA
Class based on LWP::UserAgent, for objects representing virtual
browsers that obey robots.txt files and don't abuse remote
servers.

*LWP::Simple
Module providing the get, head, getprint, getstore,
and mirror shortcut functions.

*LWP::UserAgent Class for objects representing "virtual browsers."

Net::HTTP Internal class used for HTTP socket connections.

Net::HTTP::Methods Internal class used for HTTP socket connections.

Net::HTTP::NB
Internal class used for HTTP socket connections with
nonblocking sockets.

Net::HTTPS Internal class used for HTTP Secure socket connections.

*URI
Main class for objects representing URIs/URLs, relative or
absolute.

URI::_foreign
Internal class for objects representing URLs for schemes for
which we don't have a specific class.

URI::_generic Internal base class for just about all URLs.

URI::_login
Internal base class for connection URLs such as telnet:,
rlogin:, and ssh:.

URI::_query
Internal base class providing methods for URL types that can
have query strings (such as foo://...?bar).

URI::_segment
Internal class for representing some return values from $url-
>path_segments() calls.

URI::_server
Internal base class for URL types where the first bit represents a
server name (most of them except mailto:).

URI::_userpass
Internal class providing methods for URL types with an optional
user[:pass] part (such as
ftp://itsme:foo@secret.int/).

URI::data
Class for objects representing the new data: URLs (RFC
2397).

*URI::Escape
Module for functions that URL-encode and URL-decode strings
(such as pot pie to and from pot%20pie).

URI::file Class for objects representing file: URLs.

URI::file::Base Internal base class for file: URLs.

URI::file::FAT
Internal base class for file: URLs under legacy MSDOS
(with 8.3 filenames).

URI::file::Mac
Internal base class for file: URLs under legacy (before v10)
MacOS.

URI::file::OS2 Internal base class for file: URLs under OS/2.

URI::file::QNX Internal base class for file: URLs under QNX.

URI::file::Unix Internal base class for file: URLs under Unix.

URI::file::Win32 Internal base class for file: URLs under MS Windows.

URI::ftp Class for objects representing ftp: URLs.

URI::gopher Class for objects representing gopher: URLs.

URI::Heuristic
Module for functions that expand abbreviated URLs such as
ora.com.

URI::http Class for objects representing http: URLs.

URI::https Class for objects representing https: URLs.

URI::ldap Class for objects representing ldap: URLs.

URI::mailto Class for objects representing mailto: URLs.

URI::news Class for objects representing news: URLs.

URI::nntp Class for objects representing nntp: URLs.

URI::pop Class for objects representing pop: URLs.

URI::rlogin Class for objects representing rlogin: login URLs.

URI::rsync Class for objects representing rsync: URLs.

URI::snews Class for objects representing snews: (Secure News) URLs.

URI::ssh Class for objects representing ssh: login URLs.

URI::telnet Class for objects representing telnet: login URLs.

URI::URL Deprecated class that is like URI; use URI instead.

URI::WithBase
Like the class URI, but objects of this class can "remember"
their base URLs.

WWW::RobotsRules
Class for objects representing restrictions parsed from various
robots.txt files.

WWW::RobotRules::AnyDBM_File
Subclass of WWW::RobotRules that uses a DBM file to cache
its contents.

Appendix B. HTTP Status Codes

You can find a detailed explanation of each status code in RFC 2616 (Hypertext Transfer Protocol—
HTTP/1.1) at http://www.rfc-editor.org.

B.1 100s: Informational

If an LWP request gets either of these rarely used codes, $response->is_info will be true.
For all other status codes, $response->is_info will be false.

100 Continue
101 Switching Protocols

B.2 200s: Successful

If an LWP request gets any of these codes, $response->is_success will be true. For all
other status codes, $response->is_success will be false.

200 OK
201 Created
202 Accepted
203 Non-Authoritative Information
204 No Content
205 Reset Content
206 Partial Content

B.3 300s: Redirection

If an LWP request gets any of these codes, $response->is_redirect will be true. For all
other status codes, $response->is_redirect will be false.

300 Multiple Choices
301 Moved Permanently
302 Found
303 See Other
304 Not Modified
305 Use Proxy
307 Temporary Redirect

B.4 400s: Client Errors

If an LWP request gets any of these 400-series codes, $response->is_error will be true, as it
will be for any of the 500-series codes. For all other status codes, $response->is_error will
be false.

400 Bad Request

401 Unauthorized
402 Payment Required
403 Forbidden
404 Not Found
405 Method Not Allowed
406 Not Acceptable
407 Proxy Authentication Required
408 Request Timeout
409 Conflict
410 Gone
411 Length Required
412 Precondition Failed
413 Request Entity Too Large
414 Request-URI Too Long
415 Unsupported Media Type
416 Requested Range Not Satisfiable
417 Expectation Failed
420-424: (Planned extensions involving WebDAV)
426 Upgrade Required (RFC 2817)

B.5 500s: Server Errors

If an LWP request gets any of these 500-series codes, $response->is_error will be true, as it
will be for any of the 400-series codes. For all other status codes, $response->is_error will
be false.

Note that at the time of this writing, the "500 Internal Server Error" code is also used by LWP to
signal some error conditions where the remote server can't even be contacted, such as when there's a
DNS failure or a TCP/IP connection error.

500 Internal Server Error
501 Not Implemented
502 Bad Gateway
503 Service Unavailable
504 Gateway Timeout
505 HTTP Version Not Supported

Appendix C. Common MIME Types

Every HTTP response that's more than just headers must specify a MIME type via the Content-
Type header (accessible as $response->content_type()). Here is a list of the usual
MIME type for each of the most common file types on the Internet. The items are sorted
alphabetically by the usual extensions.

Regrettably, this list is neither complete nor authoritative, as there are more file types in use than those
given "official" MIME types. For more information, see HTTP: The Definitive Guide (O'Reilly). Also
consider the mime.types file that comes with Apache and/or your browser's "Helper Applications"
configuration menus. For the list of official MIME types, see http://www.isi.edu/in-
notes/iana/assignments/media-types/.

Extension MIME type

.au audio/basic

.avi video/msvideo, video/avi, video/x-msvideo

.bmp image/bmp

.bz2 application/x-bzip2

.css text/css

.dtd application/xml-dtd

.doc application/msword

.exe application/octet-stream

.gif image/gif

.gz application/x-gzip

.hqx application/mac-binhex40

.html text/html

.jar application/java-archive

.jpg image/jpeg

.js application/x-javascript

.midi audio/x-midi

.mp3 audio/mpeg

.mpeg video/mpeg

.ogg audio/vorbis, application/ogg

.pdf application/pdf

.pl application/x-perl

.png image/png

.ppt application/vnd.ms-powerpoint

.ps application/postscript

.qt video/quicktime

.ra audio/x-pn-realaudio, audio/vnd.rn-realaudio

.ram audio/x-pn-realaudio, audio/vnd.rn-realaudio

.rdf application/rdf, application/rdf+xml

.rtf application/rtf

.sgml text/sgml

.sit application/x-stuffit

.svg image/svg+xml

.swf application/x-shockwave-flash

.tar.gz application/x-tar

.tgz application/x-tar

.tiff image/tiff

.tsv text/tab-separated-values

.txt text/plain

.wav audio/wav, audio/x-wav

.xls application/vnd.ms-excel

.xml application/xml

.zip application/zip, application/x-compressed-zip

Appendix D. Language Tags

Language tags are a system defined in RFC 3066, which is used in various Internet protocols and
formats, including HTML, HTTP, and XML. For example, an HTTP request often has an Accept-
Language header, an HTTP response can have a Content-Language header, and any HTML
element can have a lang="en-US" or (in XML and XHTML) an xml:lang="en-US"
attribute to indicate that its content is in that language.

There are many more language tags than are presented here; for the full list, see documentation for the
Perl module I18N::LangTags::List. This appendix lists major languages, in alphabetical order by their
English names.

Tag Language Tag Language

sq Albanian en-us American English

ar Arabic en-gb British English

hy Armenian et Estonian

as Assamese fa Farsi

eu Basque fi Finnish

be Belarusian fr French

bn Bengali/Bangla fr-ca Canadian French

bg Bulgarian fr-fr French French

ca Catalan ga Irish Gaelic

zh Chinese gd Scots Gaelic

zh-cn Mainland Chinese de German

zh-tw Taiwan Chinese el Modern Greek

hr Croatian grc Ancient Greek

cs Czech gu Gujarati

da Danish haw Hawaiian

nl Dutch he Hebrew

en English hi Hindi

hu Hungarian pt Portuguese

is Icelandic pt-br Brazilian Portuguese

id Indonesian pt-pt European Portuguese

it Italian pa Punjabi

ja Japanese ro Romanian

kn Kannada ru Russian

ks Kashmiri sa Sanskrit

kok Konkani sr Serbian

ko Korean sd Sindhi

la Latin sk Slovak

lv Latvian sl Slovene

lt Lithuanian es Spanish

mk Macedonian es-es European Spanish

ms Malay es-mx Mexican Spanish

ml Malayalam sv Swedish

mt Maltese tl Tagalog

mi Maori ta Tamil

mr Marathi te Telugu

mni Meithei/Manipuri th Thai

ne Nepali tr Turkish

no Norwegian uk Ukrainian

nb Norwegian Bokmål ur Urdu

nn Norwegian Nynorsk vi Vietnamese

or Oriya cy Welsh

pl Polish

Appendix E. Common Content Encodings

In an ideal world, the only character encoding (or, loosely, "character set") that you'd ever see would
be UTF-8 (utf-8), and Latin-1 (iso-8859-1) for all those legacy documents. However, the
encodings mentioned below exist and can be found on the Web. They are listed below in order of their
English names, with the lefthand side being the value you'd get returned from $response-
>content_charset. The complete list of character sets can be found at
http://www.iana.org/assignments/character-sets.

Value Encoding

us-ascii ASCII plain (just characters 0x00-0x7F)

asmo-708 Arabic ASMO-708

iso-8859-6 Arabic ISO

dos-720 Arabic MSDOS

windows-1256 Arabic MSWindows

iso-8859-4 Baltic ISO

windows-1257 Baltic MSWindows

iso-8859-2 Central European ISO

ibm852 Central European MSDOS

windows-1250 Central European MSWindows

hz-gb-2312 Chinese Simplified (HZ)

gb2312 Chinese Simplified (GB2312)

euc-cn Chinese Simplified EUC

big5 Chinese Traditional (Big5)

cp866 Cyrillic DOS

iso-8859-5 Cyrillic ISO

koi8-r Cyrillic KOI8-R

koi8-u Cyrillic KOI8-U

windows-1251 Cyrillic MSWindows

iso-8859-7 Greek ISO

windows-1253 Greek MSWindows

iso-8859-8-i Hebrew ISO Logical

iso-8859-8 Hebrew ISO Visual

dos-862 Hebrew MSDOS

windows-1255 Hebrew MSWindows

euc-jp Japanese EUC-JP

iso-2022-jp Japanese JIS

shift_jis Japanese Shift-JIS

iso-2022-kr Korean ISO

euc-kr Korean Standard

windows-874 Thai MSWindows

iso-8859-9 Turkish ISO

windows-1254 Turkish MSWindows

utf-8 Unicode expressed as UTF-8

utf-16 Unicode expressed as UTF-16

windows-1258 Vietnamese MSWindows

viscii Vietnamese VISCII

iso-8859-1 Western European (Latin-1)

windows-1252 Western European (Latin-1) with extra characters in 0x80-0x9F

Appendix F. ASCII Table

Gone are the days when ASCII meant just US-ASCII characters 0-127. For over a decade now, Latin-
1 support (US-ASCII plus characters 160-255) has been the bare minimum for any Internet
application, and support for Unicode (Latin-1 plus characters 256 and up) is becoming the rule more
than the exception. Although a full Unicode character chart is a book on its own, this appendix lists all
US-ASCII characters, plus all the Unicode characters that are common enough that the current HTML
specification (4.01) defines a named entity for them.

Note that at time of this writing, not all browsers support all these characters, and not all users have
installed the fonts needed to display some characters.

Also note that in HTML, XHTML, and XML, you can refer to any Unicode character regardless of
whether it has a named entity (such as €) by using a decimal character reference such as
€ or a hexadecimal character reference such as € (note the leading x). See
http://www.unicode.org/charts/ for a complete reference for Unicode characters.

Dec Hex Char Octal Raw
encoding

UTF8 encoding HTML entity Description

0 0000 000 0x00 0x00 NUL

1 0001 001 0x01 0x01 SOH

2 0002 002 0x02 0x02 STX

3 0003 003 0x03 0x03 ETX

4 0004 004 0x04 0x04 EOT

5 0005 005 0x05 0x05 ENQ

6 0006 006 0x06 0x06 ACK

7 0007 007 0x07 0x07 BEL, bell, alarm, \a

8 0008 010 0x08 0x08 BS, backspace, \b

9 0009 011 0x09 0x09 HT, tab, \t

10 000a 012 0x0A 0x0A LF, line feed, \cj

11 000b 013 0x0B 0x0B VT

12 000c 014 0x0C 0x0C FF, NP, form feed, \f

13 000d 015 0x0D 0x0D CR, carriage return, \cm

14 000e 016 0x0E 0x0E SO

15 000f 017 0x0F 0x0F SI

16 0010 020 0x10 0x10 DLE

17 0011 021 0x11 0x11 DC1

18 0012 022 0x12 0x12 DC2

19 0013 023 0x13 0x13 DC3

20 0014 024 0x14 0x14 DC4

21 0015 025 0x15 0x15 NAK

22 0016 026 0x16 0x16 SYN

23 0017 027 0x17 0x17 ETB

24 0018 030 0x18 0x18 CAN

25 0019 031 0x19 0x19 EM

26 001a 032 0x1A 0x1A SUB

27 001b 033 0x1B 0x1B ESC, escape, \e

28 001c 034 0x1C 0x1C FS

29 001d 035 0x1D 0x1D GS

30 001e 036 0x1E 0x1E RS

31 001f 037 0x1F 0x1F US

32 0020 040 0x20 0x20 SPC, space

33 0021 ! 041 0x21 0x21 Exclamation point, bang

34 0022 " 042 0x22 0x22 " Quote, double quote

35 0023 # 043 0x23 0x23 Number, pound, hash

36 0024 $ 044 0x24 0x24 Dollar

37 0025 % 045 0x25 0x25 Percent

38 0026 & 046 0x26 0x26 & Ampersand, and

39 0027 ' 047 0x27 0x27 ' Apostrophe, single quote

40 0028 (050 0x28 0x28 Open parenthesis, open parens

41 0029) 051 0x29 0x29
Close parenthesis, close
parens

42 002a * 052 0x2A 0x2A Asterisk, star, glob

43 002b + 053 0x2B 0x2B Plus

44 002c , 054 0x2C 0x2C Comma

45 002d - 055 0x2D 0x2D Hyphen, dash, minus

46 002e . 056 0x2E 0x2E Period, dot, decimal, full stop

47 002f / 057 0x2F 0x2F
Slash, forward slash, stroke,
virgule, solidus

48 0030 0 060 0x30 0x30
49 0031 1 061 0x31 0x31
50 0032 2 062 0x32 0x32
51 0033 3 063 0x33 0x33
52 0034 4 064 0x34 0x34
53 0035 5 065 0x35 0x35
54 0036 6 066 0x36 0x36
55 0037 7 067 0x37 0x37
56 0038 8 070 0x38 0x38
57 0039 9 071 0x39 0x39
58 003a : 072 0x3A 0x3A Colon

59 003b ; 073 0x3B 0x3B Semicolon

60 003c < 074 0x3C 0x3C < Less-than sign

61 003d = 075 0x3D 0x3D Equals sign

62 003e > 076 0x3E 0x3E > Greater-than sign

63 003f ? 077 0x3F 0x3F Question mark

64 0040 @ 100 0x40 0x40 At sign

65 0041 A 101 0x41 0x41
66 0042 B 102 0x42 0x42
67 0043 C 103 0x43 0x43
68 0044 D 104 0x44 0x44
69 0045 E 105 0x45 0x45
70 0046 F 106 0x46 0x46
71 0047 G 107 0x47 0x47
72 0048 H 110 0x48 0x48
73 0049 I 111 0x49 0x49
74 004a J 112 0x4A 0x4A
75 004b K 113 0x4B 0x4B
76 004c L 114 0x4C 0x4C
77 004d M 115 0x4D 0x4D
78 004e N 116 0x4E 0x4E
79 004f O 117 0x4F 0x4F
80 0050 P 120 0x50 0x50
81 0051 Q 121 0x51 0x51
82 0052 R 122 0x52 0x52
83 0053 S 123 0x53 0x53
84 0054 T 124 0x54 0x54
85 0055 U 125 0x55 0x55
86 0056 V 126 0x56 0x56
87 0057 W 127 0x57 0x57
88 0058 X 130 0x58 0x58
89 0059 Y 131 0x59 0x59
90 005a Z 132 0x5A 0x5A

91 005b [133 0x5B 0x5B
Left (square) bracket, open
(square) bracket

92 005c \ 134 0x5C 0x5C Backslash

93 005d] 135 0x5D 0x5D
Right (square) bracket, close
(square) bracket

94 005e ^ 136 0x5E 0x5E Caret, up-arrow, circumflex

95 005f _ 137 0x5F 0x5F Underscore

96 0060 ` 140 0x60 0x60 Backtick, backquote

97 0061 a 141 0x61 0x61
98 0062 b 142 0x62 0x62
99 0063 c 143 0x63 0x63
100 0064 d 144 0x64 0x64
101 0065 e 145 0x65 0x65
102 0066 f 146 0x66 0x66
103 0067 g 147 0x67 0x67
104 0068 h 150 0x68 0x68
105 0069 i 151 0x69 0x69

106 006a j 152 0x6A 0x6A
107 006b k 153 0x6B 0x6B
108 006c l 154 0x6C 0x6C
109 006d m 155 0x6D 0x6D
110 006e n 156 0x6E 0x6E
111 006f o 157 0x6F 0x6F
112 0070 p 160 0x70 0x70
113 0071 q 161 0x71 0x71
114 0072 r 162 0x72 0x72
115 0073 s 163 0x73 0x73
116 0074 t 164 0x74 0x74
117 0075 u 165 0x75 0x75
118 0076 v 166 0x76 0x76
119 0077 w 167 0x77 0x77
120 0078 x 170 0x78 0x78
121 0079 y 171 0x79 0x79
122 007a z 172 0x7A 0x7A
123 007b { 173 0x7B 0x7B Open brace

124 007c | 174 0x7C 0x7C Pipe, vertical bar

125 007d } 175 0x7D 0x7D Close brace

126 007e ~ 176 0x7E 0x7E Tilde, twiddle, squiggle

127 007f 177 0x7F 0x7F DEL, delete

128 0080 200 0x80 0xC2,0x80 (Undefined)

129 0081 201 0x81 0xC2,0x81 (Undefined)

130 0082 202 0x82 0xC2,0x82 (Undefined)

131 0083 203 0x83 0xC2,0x83 (Undefined)

132 0084 204 0x84 0xC2,0x84 (Undefined)

133 0085 205 0x85 0xC2,0x85 (Undefined)

134 0086 206 0x86 0xC2,0x86 (Undefined)

135 0087 207 0x87 0xC2,0x87 (Undefined)

136 0088 210 0x88 0xC2,0x88 (Undefined)

137 0089 211 0x89 0xC2,0x89 (Undefined)

138 008a 212 0x8A 0xC2,0x8A (Undefined)

139 008b 213 0x8B 0xC2,0x8B (Undefined)

140 008c 214 0x8C 0xC2,0x8C (Undefined)

141 008d 215 0x8D 0xC2,0x8D (Undefined)

142 008e 216 0x8E 0xC2,0x8E (Undefined)

143 008f 217 0x8F 0xC2,0x8F (Undefined)

144 0090 220 0x90 0xC2,0x90 (Undefined)

145 0091 221 0x91 0xC2,0x91 (Undefined)

146 0092 222 0x92 0xC2,0x92 (Undefined)

147 0093 223 0x93 0xC2,0x93 (Undefined)

148 0094 224 0x94 0xC2,0x94 (Undefined)

149 0095 225 0x95 0xC2,0x95 (Undefined)

150 0096 226 0x96 0xC2,0x96 (Undefined)

151 0097 227 0x97 0xC2,0x97 (Undefined)

152 0098 230 0x98 0xC2,0x98 (Undefined)

153 0099 231 0x99 0xC2,0x99 (Undefined)

154 009a 232 0x9A 0xC2,0x9A (Undefined)

155 009b 233 0x9B 0xC2,0x9B (Undefined)

156 009c 234 0x9C 0xC2,0x9C (Undefined)

157 009d 235 0x9D 0xC2,0x9D (Undefined)

158 009e 236 0x9E 0xC2,0x9E (Undefined)

159 009f 237 0x9F 0xC2,0x9F (Undefined)

160 00a0 240 0xA0 0xC2,0xA0 No-break space, nonbreaking
space

161 00a1 ¡ 241 0xA1 0xC2,0xA1 ¡ Inverted exclamation mark

162 00a2 ¢ 242 0xA2 0xC2,0xA2 ¢ Cent sign

163 00a3 £ 243 0xA3 0xC2,0xA3 £ Pound sign

164 00a4 ¤ 244 0xA4 0xC2,0xA4 ¤ Currency sign

165 00a5 ¥ 245 0xA5 0xC2,0xA5 ¥ Yen sign, yuan sign

166 00a6 | 246 0xA6 0xC2,0xA6 ¦ Broken bar, broken vertical
bar

167 00a7 § 247 0xA7 0xC2,0xA7 § Section sign

168 00a8 ¨ 250 0xA8 0xC2,0xA8 ¨ Diaeresis, spacing diaeresis

169 00a9 © 251 0xA9 0xC2,0xA9 © Copyright sign

170 00aa ª 252 0xAA 0xC2,0xAA ª Feminine ordinal indicator

171 00ab « 253 0xAB 0xC2,0xAB «
Left-pointing double angle
quotation mark, left pointing
guillemet

172 00ac ¬ 254 0xAC 0xC2,0xAC ¬ Not sign, angled dash

173 00ad (-) 255 0xAD 0xC2,0xAD ­ Soft hyphen, discretionary
hyphen

174 00ae ® 256 0xAE 0xC2,0xAE ® Registered sign, registered
trademark sign

175 00af ¯ 257 0xAF 0xC2,0xAF ¯ Macron, spacing macron,
overline, APL overbar

176 00b0 ° 260 0xB0 0xC2,0xB0 ° Degree sign

177 00b1 ± 261 0xB1 0xC2,0xB1 ± Plus-minus sign, plus-or-
minus sign

178 00b2 2 262 0xB2 0xC2,0xB2 ² Superscript two, superscript
digit two, squared

179 00b3 3 263 0xB3 0xC2,0xB3 ³ Superscript three, superscript
digit three, cubed

180 00b4 ´ 264 0xB4 0xC2,0xB4 ´ Acute accent, spacing acute

181 00b5 µ 265 0xB5 0xC2,0xB5 µ Micro sign

182 00b6 ¶ 266 0xB6 0xC2,0xB6 ¶ Pilcrow sign, paragraph sign

183 00b7 · 267 0xB7 0xC2,0xB7 · Middle dot, Georgian comma,
Greek middle dot

184 00b8 ¸ 270 0xB8 0xC2,0xB8 ¸ Cedilla, spacing cedilla

185 00b9 1 271 0xB9 0xC2,0xB9 ¹ Superscript one, superscript
digit one

186 00ba º 272 0xBA 0xC2,0xBA º Masculine ordinal indicator

187 00bb » 273 0xBB 0xC2,0xBB »
Right-pointing double angle
quotation mark, right pointing
guillemet

188 00bc 274 0xBC 0xC2,0xBC ¼ Vulgar fraction one quarter,
fraction one quarter

189 00bd 1/2 275 0xBD 0xC2,0xBD ½ Vulgar fraction one half,
fraction one half

190 00be 276 0xBE 0xC2,0xBE ¾ Vulgar fraction three quarters,
fraction three quarters

191 00bf ¿ 277 0xBF 0xC2,0xBF ¿ Inverted question mark,
turned question mark

192 00c0 À 300 0xC0 0xC3,0x80 À Capital A grave, capital A
grave

193 00c1 Á 301 0xC1 0xC3,0x81 Á Capital A acute

194 00c2 Â 302 0xC2 0xC3,0x82 Â Capital A circumflex

195 00c3 Ã 303 0xC3 0xC3,0x83 Ã Capital A tilde

196 00c4 Ä 304 0xC4 0xC3,0x84 Ä Capital A diaeresis

197 00c5 Å 305 0xC5 0xC3,0x85 Å Capital A ring above, capital
A ring

198 00c6 Æ 306 0xC6 0xC3,0x86 Æ Capital AE, capital ligature
AE

199 00c7 Ç 307 0xC7 0xC3,0x87 Ç Capital C cedilla

200 00c8 È 310 0xC8 0xC3,0x88 È Capital E grave

201 00c9 É 311 0xC9 0xC3,0x89 É Capital E acute

202 00ca Ê 312 0xCA 0xC3,0x8A Ê Capital E circumflex

203 00cb Ë 313 0xCB 0xC3,0x8B Ë Capital E diaeresis

204 00cc Ì 314 0xCC 0xC3,0x8C Ì Capital I grave

205 00cd Í 315 0xCD 0xC3,0x8D Í Capital I acute

206 00ce Î 316 0xCE 0xC3,0x8E Î Capital I circumflex

207 00cf Ï 317 0xCF 0xC3,0x8F Ï Capital I diaeresis

208 00d0 320 0xD0 0xC3,0x90 Ð Capital Eth, Edh, crossed D

209 00d1 Ñ 321 0xD1 0xC3,0x91 Ñ Capital N tilde

210 00d2 Ò 322 0xD2 0xC3,0x92 Ò Capital O grave

211 00d3 Ó 323 0xD3 0xC3,0x93 Ó Capital O acute

212 00d4 Ô 324 0xD4 0xC3,0x94 Ô Capital O circumflex

213 00d5 Õ 325 0xD5 0xC3,0x95 Õ Capital O tilde

214 00d6 Ö 326 0xD6 0xC3,0x96 Ö Capital O diaeresis

215 00d7 x 327 0xD7 0xC3,0x97 × Multiplication sign

216 00d8 Ø 330 0xD8 0xC3,0x98 Ø Capital O stroke, capital O
slash

217 00d9 Ù 331 0xD9 0xC3,0x99 Ù Capital U grave

218 00da Ú 332 0xDA 0xC3,0x9A Ú Capital U acute

219 00db û 333 0xDB 0xC3,0x9B Û Capital U circumflex

220 00dc Ü 334 0xDC 0xC3,0x9C Ü Capital U diaeresis

221 00dd Ý 335 0xDD 0xC3,0x9D Ý Capital Y acute

222 00de 336 0xDE 0xC3,0x9E Þ Capital Thorn

223 00df ß 337 0xDF 0xC3,0x9F ß Sharp s, ess-zed

224 00e0 à 340 0xE0 0xC3,0xA0 à a grave

225 00e1 á 341 0xE1 0xC3,0xA1 á a acute

226 00e2 â 342 0xE2 0xC3,0xA2 â a circumflex

227 00e3 ã 343 0xE3 0xC3,0xA3 ã a tilde

228 00e4 ä 344 0xE4 0xC3,0xA4 ä a diaeresis

229 00e5 å 345 0xE5 0xC3,0xA5 å a ring above, a ring

230 00e6 æ 346 0xE6 0xC3,0xA6 æ ae, ligature ae

231 00e7 ç 347 0xE7 0xC3,0xA7 ç c cedilla

232 00e8 è 350 0xE8 0xC3,0xA8 è e grave

233 00e9 é 351 0xE9 0xC3,0xA9 é e acute

234 00ea ê 352 0xEA 0xC3,0xAA ê e circumflex

235 00eb ë 353 0xEB 0xC3,0xAB ë e diaeresis

236 00ec ì 354 0xEC 0xC3,0xAC ì i grave

237 00ed í 355 0xED 0xC3,0xAD í i acute

238 00ee î 356 0xEE 0xC3,0xAE î i circumflex

239 00ef ï 357 0xEF 0xC3,0xAF ï i diaeresis

240 00f0 360 0xF0 0xC3,0xB0 ð eth, edh, crossed d

241 00f1 ñ 361 0xF1 0xC3,0xB1 ñ n tilde

242 00f2 ò 362 0xF2 0xC3,0xB2 ò o grave

243 00f3 ó 363 0xF3 0xC3,0xB3 ó o acute

244 00f4 ô 364 0xF4 0xC3,0xB4 ô o circumflex

245 00f5 õ 365 0xF5 0xC3,0xB5 õ o tilde

246 00f6 ö 366 0xF6 0xC3,0xB6 ö o diaeresis

247 00f7 ÷ 367 0xF7 0xC3,0xB7 ÷ Division sign

248 00f8 370 0xF8 0xC3,0xB8 ø o stroke, o slash

249 00f9 ù 371 0xF9 0xC3,0xB9 ù u grave

250 00fa ú 372 0xFA 0xC3,0xBA ú u acute

251 00fb Û 373 0xFB 0xC3,0xBB û u circumflex

252 00fc ü 374 0xFC 0xC3,0xBC ü u diaeresis

253 00fd 375 0xFD 0xC3,0xBD ý y acute

254 00fe 376 0xFE 0xC3,0xBE þ Thorn

255 00ff ÿ 377 0xFF 0xC3,0xBF ÿ y diaeresis

338 0152 0xC5,0x92 Œ Capital ligature OE

339 0153 0xC5,0x93 œ Ligature oe

352 0160 0xC5,0xA0 Š Capital S caron

353 0161 0xC5,0xA1 š s caron

376 0178

 0xC5,0xB8 Ÿ Capital Y diaeresis

402 0192
 0xC6,0x92 ƒ F hook, function, florin

710 02c6 ^ 0xCB,0x86 ˆ Modifier letter circumflex
accent

732 02dc ~ 0xCB,0x9C ˜ Small tilde

913 0391 0xCE,0x91 Α Capital alpha

914 0392 0xCE,0x92 Β Capital beta

915 0393 0xCE,0x93 Γ Capital gamma

916 0394 0xCE,0x94 Δ Capital delta

917 0395 0xCE,0x95 Ε Capital epsilon

918 0396 0xCE,0x96 Ζ Capital zeta

919 0397 0xCE,0x97 Η Capital eta

920 0398 0xCE,0x98 Θ Capital theta

921 0399 0xCE,0x99 Ι Capital iota

922 039a K 0xCE,0x9A Κ Capital kappa

923 039b 0xCE,0x9B Λ Capital lambda

924 039c 0xCE,0x9C Μ Capital mu

925 039d 0xCE,0x9D Ν Capital nu

926 039e 0xCE,0x9E Ξ Capital xi

927 039f 0xCE,0x9F Ο Capital omicron

928 03a0 0xCE,0xA0 Π Capital pi

929 03a1 0xCE,0xA1 Ρ Capital rho

931 03a3 0xCE,0xA3 Σ Capital sigma

932 03a4 0xCE,0xA4 Τ Capital tau

933 03a5 0xCE,0xA5 Υ Capital upsilon

934 03a6 0xCE,0xA6 Φ Capital phi

935 03a7 0xCE,0xA7 Χ Capital chi

936 03a8 0xCE,0xA8 Ψ Capital psi

937 03a9 0xCE,0xA9 Ω Capital omega

945 03b1 0xCE,0xB1 α Alpha

946 03b2

 0xCE,0xB2 β Beta

947 03b3 0xCE,0xB3 γ Gamma

948 03b4 0xCE,0xB4 δ Delta

949 03b5 0xCE,0xB5 ε Epsilon

950 03b6

 0xCE,0xB6 ζ Zeta

951 03b7 0xCE,0xB7 η Eta

952 03b8 0xCE,0xB8 θ Theta

953 03b9 0xCE,0xB9 ι Iota

954 03ba 0xCE,0xBA κ Kappa

955 03bb 0xCE,0xBB λ Lambda

956 03bc µ 0xCE,0xBC μ Mu

957 03bd 0xCE,0xBD ν Nu

958 03be

 0xCE,0xBE ξ Xi

959 03bf 0xCE,0xBF ο Omicron

960 03c0 0xCF,0x80 π Pi

961 03c1 0xCF,0x81 ρ Rho

962 03c2 0xCF,0x82 ς Final sigma

963 03c3 0xCF,0x83 σ Sigma

964 03c4 0xCF,0x84 τ Tau

965 03c5 0xCF,0x85 υ Upsilon

966 03c6 0xCF,0x86 φ Phi

967 03c7 0xCF,0x87 χ Chi

968 03c8 0xCF,0x88 ψ Psi

969 03c9 0xCF,0x89 ω Omega

977 03d1 0xCF,0x91 ϑ Theta symbol

978 03d2 0xCF,0x92 ϒ Greek upsilon with hook
symbol

982 03d6 0xCF,0x96 ϖ Greek pi symbol

8194 2002 0xE2,0x80,0x82   En space

8195 2003 0xE2,0x80,0x83   Em space

8201 2009 0xE2,0x80,0x89   Thin space

8204 200c 0xE2,0x80,0x8C ‌ Zero width non-joiner

8205 200d 0xE2,0x80,0x8D ‍ Zero width joiner

8206 200e 0xE2,0x80,0x8E ‎ Left-to-right mark

8207 200f 0xE2,0x80,0x8F ‏ Right-to-left mark

8211 2013 - 0xE2,0x80,0x93 – En dash

8212 2014 — 0xE2,0x80,0x94 — Em dash

8216 2018 ` 0xE2,0x80,0x98 ‘ Left single quotation mark

8217 2019 ' 0xE2,0x80,0x99 ’ Right single quotation mark

8218 201a 0xE2,0x80,0x9A ‚ Single low-9 quotation mark

8220 201c " 0xE2,0x80,0x9C “ Left double quotation mark

8221 201d " 0xE2,0x80,0x9D ” Right double quotation mark

8222 201e 0xE2,0x80,0x9E „ Double low-9 quotation mark

8224 2020 0xE2,0x80,0xA0 † Dagger

8225 2021 0xE2,0x80,0xA1 ‡ Double dagger

8226 2022 · 0xE2,0x80,0xA2 • Bullet, black small circle

8230 2026 ... 0xE2,0x80,0xA6 … Horizontal ellipsis, three dot
leader

8240 2030 0xE2,0x80,0xB0 ‰ Per mille sign

8242 2032 ' 0xE2,0x80,0xB2 ′ Prime, minutes, feet

8243 2033 0xE2,0x80,0xB3 ″ Double prime, seconds, inches

8249 2039 0xE2,0x80,0xB9 ‹ Single left-pointing angle
quotation mark

8250 203a 0xE2,0x80,0xBA › Single right-pointing angle
quotation mark

8254 203e - 0xE2,0x80,0xBE ‾ Overline, spacing overscore

8260 2044 / 0xE2,0x81,0x84 ⁄ Fraction slash

8364 20ac 0xE2,0x82,0xAC € Euro sign

8465 2111 0xE2,0x84,0x91 ℑ Blackletter capital I,
imaginary part

8472 2118
 0xE2,0x84,0x98 ℘ Script capital P, power set,

Weierstrass p

8476 211c 0xE2,0x84,0x9C ℜ Blackletter capital R, real part
symbol

8482 2122 0xE2,0x84,0xA2 ™ Trademark sign

8501 2135 0xE2,0x84,0xB5 ℵ Alef symbol, first transfinite
cardinal

8592 2190 0xE2,0x86,0x90 ← Leftward arrow

8593 2191 0xE2,0x86,0x91 ↑ Upward arrow

8594 2192 0xE2,0x86,0x92 → Rightward arrow

8595 2193 0xE2,0x86,0x93 ↓ Downward arrow

8596 2194 0xE2,0x86,0x94 ↔ Left-right arrow

8629 21b5 0xE2,0x86,0xB5 ↵ Downward arrow with corner
leftward, carriage return

8656 21d0 0xE2,0x87,0x90 ⇐ Leftward double arrow

8657 21d1 0xE2,0x87,0x91 ⇑ Upward double arrow

8658 21d2 0xE2,0x87,0x92 ⇒ Rightward double arrow

8659 21d3 0xE2,0x87,0x93 ⇓ Downward double arrow

8660 21d4 0xE2,0x87,0x94 ⇔ Left-right double arrow

8704 2200 0xE2,0x88,0x80 ∀ For all

8706 2202 0xE2,0x88,0x82 ∂ Partial differential

8707 2203 0xE2,0x88,0x83 ∃ There exists

8709 2205 Ø 0xE2,0x88,0x85 ∅ Empty set, null set, diameter

8711 2207 0xE2,0x88,0x87 ∇ Nabla, backward difference

8712 2208 0xE2,0x88,0x88 ∈ Element of

8713 2209 0xE2,0x88,0x89 ∉ Not an element of

8715 220b 0xE2,0x88,0x8B ∋ Contains as member

8719 220f 0xE2,0x88,0x8F ∏ n-ary product, product sign

8721 2211 0xE2,0x88,0x91 ∑ n-ary sumation

8722 2212 - 0xE2,0x88,0x92 − Minus sign

8727 2217 * 0xE2,0x88,0x97 ∗ Asterisk operator

8730 221a 0xE2,0x88,0x9A √ Square root, radical sign

8733 221d 0xE2,0x88,0x9D ∝ Proportional to

8734 221e 0xE2,0x88,0x9E ∞ Infinity

8736 2220 0xE2,0x88,0xA0 ∠ Angle

8743 2227 0xE2,0x88,0xA7 ∧ Logical and, wedge

8744 2228 0xE2,0x88,0xA8 ∨ Logical or, vee

8745 2229 0xE2,0x88,0xA9 ∩ Intersection, cap

8746 222a 0xE2,0x88,0xAA ∪ Union, cup

8747 222b
 0xE2,0x88,0xAB ∫ Integral

8756 2234 0xE2,0x88,0xB4 ∴ Therefore

8764 223c 0xE2,0x88,0xBC ∼ Tilde operator, varies with,
similar to

8773 2245 0xE2,0x89,0x85 ≅ Approximately equal to

8776 2248 0xE2,0x89,0x88 ≈ Almost equal to, asymptotic to

8800 2260 0xE2,0x89,0xA0 ≠ Not equal to

8801 2261 0xE2,0x89,0xA1 ≡ Identical to

8804 2264 0xE2,0x89,0xA4 ≤ Less-than or equal to

8805 2265 0xE2,0x89,0xA5 ≥ Greater-than or equal to

8834 2282 0xE2,0x8A,0x82 ⊂ Subset of

8835 2283 0xE2,0x8A,0x83 ⊃ Superset of

8836 2284 0xE2,0x8A,0x84 ⊄ Not a subset of

8838 2286 0xE2,0x8A,0x86 ⊆ Subset of or equal to

8839 2287 0xE2,0x8A,0x87 ⊇ Superset of or equal to

8853 2295 0xE2,0x8A,0x95 ⊕ Circled plus, direct sum

8855 2297 0xE2,0x8A,0x97 ⊗ Circled times, vector product

8869 22a5 0xE2,0x8A,0xA5 ⊥ Up tack, orthogonal to,
perpendicular

8901 22c5 0xE2,0x8B,0x85 ⋅ Dot operator

8968 2308 0xE2,0x8C,0x88 ⌈ Left ceiling, APL upstile

8969 2309 0xE2,0x8C,0x89 ⌉ Right ceiling

8970 230a 0xE2,0x8C,0x8A ⌊ Left floor, APL downstile

8971 230b 0xE2,0x8C,0x8B ⌋ Right floor

9001 2329 0xE2,0x8C,0xA9 ⟨ Left-pointing angle bracket,
bra

9002 232a 0xE2,0x8C,0xAA ⟩ Right-pointing angle bracket,
ket

9674 25ca

 0xE2,0x97,0x8A ◊ Lozenge

9824 2660 0xE2,0x99,0xA0 ♠ Black spade suit

9827 2663 0xE2,0x99,0xA3 ♣ Black club suit, shamrock

9829 2665 0xE2,0x99,0xA5 ♥ Black heart suit, valentine

9830 2666 0xE2,0x99,0xA6 ♦ Black diamond suit

Appendix G. User's View of Object-Oriented Modules

The following article by Sean M. Burke first appeared in The Perl Journal #17 and is copyright 2000,
The Perl Journal. It appears courtesy of Jon Orwant and The Perl Journal. This document may be
distributed under the same terms as Perl itself.

G.1 A User's View of Object-Oriented Modules

The first time that most Perl programmers run into object-oriented programming is when they need to
use a module whose interface is object-oriented. This is often a mystifying experience, since talk of
"methods" and "constructors" is unintelligible to programmers who thought that functions and
variables was all there was to worry about.

Articles and books that explain object-oriented programming (OOP), do so in terms of how to
program that way. That's understandable, and if you learn to write object-oriented code of your own,
you'd find it easy to use object-oriented code that others write. But this approach is the long way
around for people whose immediate goal is just to use existing object-oriented modules, but who don't
yet want to know all the gory details of having to write such modules for themselves.

This article is for those programmers—programmers who want to know about objects from the
perspective of using object-oriented modules.

G.2 Modules and Their Functional Interfaces

Modules are the main way that Perl provides for bundling up code for later use by yourself or others.
As I'm sure you can't help noticing from reading The Perl Journal, CPAN (the Comprehensive Perl
Archive Network) is the repository for modules (or groups of modules) that others have written, to do
anything from composing music to accessing web pages. A good deal of those modules even come
with every installation of Perl.

One module that you may have used before, and which is fairly typical in its interface, is Text::Wrap.
It comes with Perl, so you don't even need to install it from CPAN. You use it in a program of yours,
by having your program code say early on:

use Text::Wrap;

and after that, you can access a function called wrap, which inserts line-breaks in text that you feed
it, so that the text will be wrapped to 72 (or however many) columns.

The way this use Text::Wrap business works is that the module Text::Wrap exists as a file
Text/Wrap.pm somewhere in one of your library directories. That file contains Perl code[G] which,
among other things, defines a function called Text::Wrap::wrap, and then exports that
function, which means that when you say wrap after having said use Text::Wrap, you'll be
actually calling the Text::Wrap::wrap function. Some modules don't export their functions, so
you have to call them by their full name, like Text::Wrap::wrap(parameters).

[G] And mixed in with the Perl code, there's documentation, which is what you read with
perldoc Text::Wrap. The perldoc program simply ignores the code and formats

the documentation text, whereas use Text::Wrap loads and runs the code while
ignoring the documentation.

Regardless of whether the typical module exports the functions it provides, a module is basically just a
container for chunks of code that do useful things. The way the module allows for you to interact with
it, is its interface. And when, like with Text::Wrap, its interface consists of functions, the module is
said to have a functional interface.[G]

[G] The term "function" (and therefore "functional") has various senses. I'm using the term
here in its broadest sense, to refer to routines—bits of code that are called by some name
and take parameters and return some value.

Using modules with functional interfaces is straightforward—instead of defining your own "wrap"
function with sub wrap { ... }, you entrust use Text::Wrap to do that for you, along
with whatever other functions its defines and exports, according to the module's documentation.
Without too much bother, you can even write your own modules to contain your frequently used
functions; I suggest having a look at the perlmod manpage for more leads on doing this.

G.3 Modules with Object-Oriented Interfaces

So suppose that one day you want to write a program that will automate the process of ftping a
bunch of files from one server down to your local machine, and then off to another server.

A quick browse through search.cpan.org turns up the module Net::FTP, which you can download and
install using normal installation instructions (unless your sysadmin has already installed it, as many
have).

Like Text::Wrap or any other module with a familiarly functional interface, you start off using
Net::FTP in your program by saying:

use Net::FTP;

However, that's where the similarity ends. The first hint of difference is that the documentation for
Net::FTP refers to it as a class. A class is a kind of module, but one that has an object-oriented
interface.

Whereas modules like Text::Wrap provide bits of useful code as functions, to be called like
function(parameters) or like PackageName::function(parameters),
Net::FTP and other modules with object-oriented interfaces provide methods. Methods are sort of like
functions in that they have a name and parameters; but methods look different, and are different,
because you have to call them with a syntax that has a class name or an object as a special argument.
I'll explain the syntax for method calls, and then later explain what they all mean.

Some methods are meant to be called as class methods, with the class name (same as the module
name) as a special argument. Class methods look like this:

ClassName->methodname(parameter1, parameter2, ...)
ClassName->methodname() # if no parameters
ClassName->methodname # same as above

which you will sometimes see written:

methodname ClassName (parameter1, parameter2, ...)
methodname ClassName # if no parameters

Basically, all class methods are for making new objects, and methods that make objects are called
constructors (and the process of making them is called "constructing" or "instantiating"). Constructor
methods typically have the name "new," or something including "new" (new_from_file, etc.);
but they can conceivably be named anything—DBI's constructor method is named "connect," for
example.

The object that a constructor method returns is typically captured in a scalar variable:

$object = ClassName->new(param1, param2...);

Once you have an object (more later on exactly what that is), you can use the other kind of method
call syntax, the syntax for object method calls. Calling object methods is just like class methods,
except that instead of the ClassName as the special argument, you use an expression that yields an
object. Usually this is just a scalar variable that you earlier captured the output of the constructor
in. Object method calls look like this:

$object->methodname(parameter1, parameter2, ...);
$object->methodname() # if no parameters
$object->methodname # same as above

which is occasionally written as:

methodname $object (parameter1, parameter2, ...)
methodname $object # if no parameters

Examples of method calls are:

my $session1 = Net::FTP->new("ftp.myhost.com");
 # Calls a class method "new", from class Net::FTP,
 # with the single parameter "ftp.myhost.com",
 # and saves the return value (which is, as usual,
 # an object), in $session1.
 # Could also be written:
 # new Net::FTP('ftp.myhost.com')
$session1->login("sburke","aoeuaoeu")
 || die "failed to login!\n";
 # calling the object method "login"
print "Dir:\n", $session1->dir(), "\n";
$session1->quit;
 # same as $session1->quit()
print "Done\n";
exit;

Incidentally, I suggest always using the syntaxes with parentheses and -> in them,[G] and avoiding the
syntaxes that start out methodname $object or methodname ModuleName. When
everything's going right, they all mean the same thing as the -> variants, but the syntax with -> is

more visually distinct from function calls, as well as being immune to some kinds of rare but puzzling
ambiguities that can arise when you're trying to call methods that have the same name as subroutines
you've defined.

[G] The character-pair -> is supposed to look like an arrow, not "negative greater-than"!

But, syntactic alternatives aside, all this talk of constructing objects and object methods begs the
question—what is an object? There are several angles to this question that the rest of this article will
answer in turn: what can you do with objects? what's in an object? what's an object value? and why do
some modules use objects at all?

G.4 What Can You Do with Objects?

You've seen that you can make objects and call object methods with them. But what are object
methods for? The answer depends on the class:

A Net::FTP object represents a session between your computer and an FTP server. So the methods
you call on a Net::FTP object are for doing whatever you'd need to do across an FTP connection. You
make the session and log in:

my $session = Net::FTP->new('ftp.aol.com');
die "Couldn't connect!" unless defined $session;
 # The class method call to "new" will return
 # the new object if it goes OK, otherwise it
 # will return undef.

$session->login('sburke', 'p@ssw3rD')
 || die "Did I change my password again?";
 # The object method "login" will give a true
 # return value if actually logs in, otherwise
 # it'll return false.

You can use the session object to change directory on that session:

$session->cwd("/home/sburke/public_html")
 || die "Hey, that was REALLY supposed to work!";
 # if the cwd fails, it'll return false

...get files from the machine at the other end of the session:

foreach my $f ('log_report_ua.txt', 'log_report_dom.txt',
 'log_report_browsers.txt')
{
 $session->get($f) || warn "Getting $f failed!"
};

...and plenty else, ending finally with closing the connection:

$session->quit();

In short, object methods are for doing things related to (or with) whatever the object represents. For
FTP sessions, it's about sending commands to the server at the other end of the connection, and that's
about it—there, methods are for doing something to the world outside the object, and the objects is
just something that specifies what bit of the world (well, what FTP session) to act upon.

With most other classes, however, the object itself stores some kind of information, and it typically
makes no sense to do things with such an object without considering the data that's in the object.

G.5 What's in an Object?

An object is (with rare exceptions) a data structure containing a bunch of attributes, each of which has
a value, as well as a name that you use when you read or set the attribute's value. Some of the object's
attributes are private, meaning you'll never see them documented because they're not for you to read
or write; but most of the object's documented attributes are at least readable, and usually writeable, by
you. Net::FTP objects are a bit thin on attributes, so we'll use objects from the class
Business::US_Amort for this example. Business::US_Amort is a very simple class (available from
CPAN) that I wrote for making calculations to do with loans (specifically, amortization, using U.S.-
style algorithms).

An object of the class Business::US_Amort represents a loan with particular parameters, i.e.,
attributes. The most basic attributes of a "loan object" are its interest rate, its principal (how much
money it's for), and it's term (how long it'll take to repay). You need to set these attributes before
anything else can be done with the object. The way to get at those attributes for loan objects is just like
the way to get at attributes for any class's objects: through accessors. An accessor is simply any
method that accesses (whether reading or writing, a.k.a. getting or putting) some attribute in the given
object. Moreover, accessors are the only way that you can change an object's attributes. (If a module's
documentation wants you to know about any other way, it'll tell you.)

Usually, for simplicity's sake, an accessor is named after the attribute it reads or writes. With
Business::US_Amort objects, the accessors you need to use first are principal,
interest_rate, and term. Then, with at least those attributes set, you can call the run
method to figure out several things about the loan. Then you can call various accessors, like
total_paid_toward_interest, to read the results:

use Business::US_Amort;
my $loan = Business::US_Amort->new;
Set the necessary attributes:
$loan->principal(123654);
$loan->interest_rate(9.25);
$loan->term(20); # twenty years

NOW we know enough to calculate:
$loan->run;

And see what came of that:
print
 "Total paid toward interest: A WHOPPING ",
 $loan->total_paid_interest, "!!\n";

This illustrates a convention that's common with accessors: calling the accessor with no arguments (as
with $loan->total_paid_interest) usually means to read the value of that attribute, but
providing a value (as with $loan->term(20)) means you want that attribute to be set to that
value. This stands to reason: why would you be providing a value, if not to set the attribute to that
value?

Although a loan's term, principal, and interest rates are all single numeric values, an object's values
can be any kind of scalar, or an array, or even a hash. Moreover, an attribute's value(s) can be objects
themselves. For example, consider MIDI files (as I wrote about in TPJ#13): a MIDI file usually
consists of several tracks. A MIDI file is complex enough to merit being an object with attributes like
its overall tempo, the file-format variant it's in, and the list of instrument tracks in the file. But tracks
themselves are complex enough to be objects too, with attributes like their track-type, a list of MIDI
commands if they're a MIDI track, or raw data if they're not. So I ended up writing the MIDI modules
so that the "tracks" attribute of a MIDI::Opus object is an array of objects from the class MIDI::Track.
This may seem like a runaround—you ask what's in one object, and get another object, or several! But
in this case, it exactly reflects what the module is for—MIDI files contain MIDI tracks, which contain
data.

G.6 What Is an Object Value?

When you call a constructor like Net::FTP->new(hostname), you get back an object value,
which is a value you can later use, in combination with a method name, to call object methods.

Now, so far we've been pretending, in the above examples, that the variables $session or $loan
are the objects you're dealing with. This idea is innocuous up to a point, but it's really a misconception
that will, at best, limit you in what you know how to do. The reality is not that the variables
$session or $query are objects; it's a little more indirect—they hold values that symbolize
objects. The kind of value that $session or $query hold is what I'm calling an object value.

To understand what kind of value this is, first think about the other kinds of scalar values you know
about: The first two types of scalar values you probably ever ran into in Perl are numbers and strings,
which you learned (or just assumed) will usually turn into each other on demand; that is, the three-
character string "2.5" can become the quantity two and a half, and vice versa. Then, especially if you
started using perl -w early on, you learned about the undefined value, which can turn into 0 if you
treat it as a number, or the empty-string if you treat it as a string.[G]

[G] You may also have been learning about references, in which case you're ready to hear
that object values are just a kind of reference, except that they reflect the class that
created thing they point to, instead of merely being a plain old array reference, hash
reference, etc. If this makes sense to you, and you want to know more about how objects
are implemented in Perl, have a look at the perltoot manpage.

And now you're learning about object values. An object value is a value that points to a data structure
somewhere in memory, which is where all the attributes for this object are stored. That data structure
as a whole belongs to a class (probably the one you named in the constructor method, like
ClassName->new), so that the object value can be used as part of object method calls.

If you want to actually see what an object value is, you might try just saying print $object.
That'll get you something like this:

Net::FTP=GLOB(0x20154240)

or:

Business::US_Amort=HASH(0x15424020)

That's not very helpful if you wanted to really get at the object's insides, but that's because the object
value is only a symbol for the object. This may all sound very abstruse and metaphysical, so a real-
world allegory might be very helpful.

You get an advertisement in the mail saying that you have been (im)personally selected to have the
rare privilege of applying for a credit card. For whatever reason, this offer sounds good to you, so you
fill out the form and mail it back to the credit card company. They gleefully approve the application
and create your account, and send you a card with a number on it.

Now, you can do things with the number on that card—clerks at stores can ring up things you want to
buy, and charge your account by keying in the number on the card. You can pay for things you order
online by punching in the card number as part of your online order. You can pay off part of the
account by sending the credit card people some of your money (well, a check) with some note (usually
the pre-printed slip) that has the card number for the account you want to pay toward. And you should
be able to call the credit card company's computer and ask it things about the card, like its balance, its
credit limit, its APR, and maybe an itemization of recent purchases and payments.

Now, what you're really doing is manipulating a credit card account, a completely abstract entity with
some data attached to it (balance, APR, etc.). But for ease of access, you have a credit card number
that is a symbol for that account. Now, that symbol is just a bunch of digits, and the number is
effectively meaningless and useless in and of itself—but in the appropriate context, it's understood to
mean the credit card account you're accessing.

This is exactly the relationship between objects and object values, and from this analogy, several facts
about object values are a bit more explicable:

• An object value does nothing in and of itself, but it's useful when you use it in the context of
an $object->method call, the same way that a card number is useful in the context of
some operation dealing with a card account.

Moreover, several copies of the same object value all refer to the same object, the same way
that making several copies of your card number won't change the fact that they all still refer to
the same single account (this is true whether you're "copying" the number by just writing it
down on different slips of paper, or whether you go to the trouble of forging exact replicas of
your own plastic credit card). That's why this:

$x = Net::FTP->new("ftp.aol.com");
$x->login("sburke", "aoeuaoeu");

o does the same thing as this:

$x = Net::FTP->new("ftp.aol.com");
$y = $x;
$z = $y;
$z->login("sburke", "aoeuaoeu");

That is, $z and $y and $x are three different slots for values, but what's in those slots are all
object values pointing to the same object—you don't have three different FTP connections,
just three variables with values pointing to the some single FTP connection.

• You can't tell much of anything about the object just by looking at the object value, any more
than you can see your credit account balance by holding the plastic card up to the light, or by
adding up the digits in your credit card number.[G]

[G] URI.pm objects are an exception to this general rule: when you use them as a
string, instead of getting a useless value like URI=HASH(0x15404220),
you instead get the string representation of that URL:
http://www.perl.com/thingamabob/ or whatever.

• You can't just make up your own object values and have them work—they can come only
from constructor methods of the appropriate class. Similarly, you get a credit card number
only by having a bank approve your application for a credit card account—at which point they
let you know what the number of your new card is.

Now, there's even more to the fact that you can't just make up your own object value: even
though you can print an object value and get a string like
Net::FTP=GLOB(0x20154240), that's just a representation of an object value.

Internally, an object value has a basically different type from a string, or a number, or the undefined
value—if $x holds a real string, then that value's slot in memory says "this is a value of type string,
and its characters are...," whereas if it's an object value, the value's slot in memory says, "this is a
value of type reference, and the location in memory that it points to is..." (and by looking at what's at
that location, Perl can tell the class of what's there).

Perl programmers typically don't have to think about all these details of Perl's internals. Many other
languages force you to be more conscious of the differences between all of these (and also between
types of numbers, which are stored differently depending on their size and whether they have
fractional parts). But Perl does its best to hide the different types of scalars from you—it turns
numbers into strings and back as needed, and takes the string or number representation of undef or
of object values as needed. However, you can't go from a string representation of an object value, back
to an object value. And that's why this doesn't work:

$x = Net::FTP->new('ftp.aol.com');
$y = Net::FTP->new('ftp.netcom.com');
$z = Net::FTP->new('ftp.qualcomm.com');
$all = join(' ', $x,$y,$z); # !!!
...later...
($aol, $netcom, $qualcomm) = split(' ', $all); # !!!
$aol->login("sburke", "aoeuaoeu");
$netcom->login("sburke", "qjkxqjkx");
$qualcomm->login("smb", "dhtndhtn");

This fails because $aol ends up holding merely the string representation of the object value from
$x, not the object value itself—when join tried to join the characters of the "strings" $x, $y, and
$z, Perl saw that they weren't strings at all, so it gave join their string representations.

Unfortunately, this distinction between object values and their string representations doesn't really fit
into the analogy of credit card numbers, because credit card numbers really are numbers—even
thought they don't express any meaningful quantity, if you stored them in a database as a quantity (as
opposed to just an ASCII string), that wouldn't stop them from being valid as credit card numbers.

This may seem rather academic, but there's two common mistakes programmers new to objects often
make, which make sense only in terms of the distinction between object values and their string
representations.

The first common error involves forgetting (or never having known in the first place) that when you
go to use a value as a hash key, Perl uses the string representation of that value. When you want to use
the numeric value two and a half as a key, Perl turns it into the three-character string "2.5." But if you
then want to use that string as a number, Perl will treat it as meaning two and a half, so you're usually
none the wiser that Perl converted the number to a string and back. But recall that Perl can't turn
strings back into objects—so if you tried to use a Net::FTP object value as a hash key, Perl actually
used its string representation, like Net::FTP=GLOB(0x20154240), but that string is unusable
as an object value. (Incidentally, there's a module Tie::RefHash that implements hashes that do let you
use real object-values as keys.)

The second common error with object values is in trying to save an object value to disk (whether
printing it to a file, or storing it in a conventional database file). All you'll get is the string, which will
be useless.

When you want to save an object and restore it later, you may find that the object's class already
provides a method specifically for this. For example, MIDI::Opus provides methods for writing an
object to disk as a standard MIDI file. The file can later be read back into memory by a MIDI::Opus
constructor method, which will return a new MIDI::Opus object representing whatever file you tell it
to read into memory. Similar methods are available with, for example, classes that manipulate graphic
images and can save them to files, which can be read back later.

But some classes, like Business::US_Amort, provide no such methods for storing an object in a file.
When this is the case, you can try using any of the Data::Dumper, Storable, or FreezeThaw modules.
Using these is unproblematic for objects of most classes, but may run into limitations with others. For
example, a Business::US_Amort object can be turned into a string with Data::Dumper, and that string
written to a file. When it's restored later, its attributes will be accessible as normal. But in the unlikely
case that the loan object was saved in mid-calculation, the calculation may not be resumable. This is
because of the way that that particular class does its calculations, but similar limitations may occur
with objects from other classes.

But often, even wanting to save an object is basically wrong—what would saving an ftp session even
mean? Saving the hostname, username, and password? current directory on both machines? the local
TCP/IP port number? In the case of "saving" a Net::FTP object, you're better off just saving whatever
details you actually need for your own purposes, so that you can make a new object later and just set
those values for it.

G.7 So Why Do Some Modules Use Objects?

All these details of using objects are definitely enough to make you wonder—is it worth the bother? If
you're a module author, writing your module with an object-oriented interface restricts the audience of
potential users to those who understand the basic concepts of objects and object values, as well as
Perl's syntax for calling methods. Why complicate things by having an object-oriented interface?

A somewhat esoteric answer is that a module has an object-oriented interface because the module's
insides are written in an object-oriented style. This article is about the basics of object-oriented
interfaces, and it'd be going far afield to explain what object-oriented design is. But the short story is
that object-oriented design is just one way of attacking messy problems. It's a way that many
programmers find very helpful (and which others happen to find to be far more of a hassle than it's
worth, incidentally), and it just happens to show up for you, the module user, as merely the style of
interface.

G.8 The Gory Details

For sake of clarity of explanation, I had to oversimplify some of the facts about objects. Here's a few
of the gorier details:

• Every example I gave of a constructor was a class method. But object methods can be
constructors, too, if the class was written to work that way: $new = $old->copy,
$node_y = $node_x->new_subnode, or the like.

• I've given the impression that there's two kinds of methods: object methods and class
methods. In fact, the same method can be both, because it's not the kind of method it is, but
the kind of calls it's written to accept—calls that pass an object, or calls that pass a class
name.

• The term "object value" isn't something you'll find used much anywhere else. It's just my
shorthand for what would properly be called an "object reference" or "reference to a blessed
item." In fact, people usually say "object" when they properly mean a reference to that object.

• I mentioned creating objects with constructors, but I didn't mention destroying them with
destructor—a destructor is a kind of method that you call to tidy up the object once you're
done with it, and want it to neatly go away (close connections, delete temporary files, free up
memory, etc.). But because of the way Perl handles memory, most modules won't require the
user to know about destructors.

• I said that class method syntax has to have the class name, as in $session =
Net::FTP->new($host). Actually, you can instead use any expression that returns a
class name: $ftp_class = 'Net::FTP'; $session = $ftp_class-
>new($host). Moreover, instead of the method name for object- or class-method calls,
you can use a scalar holding the method name: $foo->$method($host). But, in
practice, these syntaxes are rarely useful.

And finally, to learn about objects from the perspective of writing your own classes, see the perltoot
documentation, or Damian Conway's exhaustive and clear book Object Oriented Perl (Manning
Publications, 1999).

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animals on the cover of Perl and LWP are blesbok. Blesbok are African antelopes related to the
hartebeest. These grazing animals, native to Africa's grasslands are extinct in the wild but preserved in
farms and parks.

Blesbok have slender, horselike bodies that are shorter than four feet at the shoulder. They are deep
red, with white patches on their faces and rumps. A white blaze extends from between a blesbok's
horns to the end of its nose, broken only by a brown band above the eyes. The blesbok's horns sweep
back, up, and inward. Both male and female blesbok have horns, though the males' are thicker.

Blesbok are diurnal, most active in the morning and evening. They sleep in the shade during the
hottest part of the day, as they are very susceptible to the heat. They travel from place to place in long
single-file lines, leaving distinct paths. Their life span is about 13 years.

Linley Dolby was the production editor and copyeditor for Perl and LWP, and Sarah Sherman was the
proofreader. Rachel Wheeler and Claire Cloutier provided quality control. Johnna VanHoose Dinse
wrote the index. Emily Quill provided production support.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was
converted to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh,
Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn
Read using Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Linley
Dolby.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written
and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

	Perl & LWP Cover
	Table of Contents
	Foreword
	Preface
	Audience for This Book
	Structure of This Book
	Important Standards Documents

	Chapter 1. Introduction to Web Automation
	1.1 The Web as Data Source
	1.2 History of LWP
	1.3 Installing LWP
	1.4 Words of Caution
	1.5 LWP in Action

	Chapter 2. Web Basics
	2.1 URLs

	Chapter 3. The LWP Class Model
	Chapter 4. URLs
	Chapter 5. Forms
	Chapter 6. Simple HTML Processing with Regular Expressions
	Chapter 7. HTML Processing with Tokens
	Chapter 8. Tokenizing Walkthrough
	Chapter 9. HTML Processing with Trees
	Chapter 10. Modifying HTML with Trees
	Chapter 11. Cookies, Authentication, and Advanced Requests
	11.1 Cookies
	11.2 Adding Extra Request Header Lines
	11.3 Authentication
	11.4 An HTTP Authentication Example:The Unicode Mailing

	Chapter 12. Spiders
	12.1 Types of Web-Querying Programs
	12.2 A User Agent for Robots
	12.3 Example: A Link-Checking Spider
	12.4 Ideas for Further Expansion

	Appendix A. LWP Modules
	Appendix B. HTTP Status Codes
	Appendix C. Common MIME Types
	Appendix D. Language Tags
	Appendix E. Common Content Encodings
	Appendix F. ASCII Table
	Appendix G. User's View of Object-Oriented Modules
	Colophon

